bridge.recipes.gemma.gemma2#
Module Contents#
Classes#
Typed options accepted by Gemma2 recipe helper functions. |
|
Typed options accepted by Gemma2 finetuning recipe helper functions. |
Functions#
Return a pre-training config for Gemma2 2B. |
|
Return a pre-training config for Gemma2 9B. |
|
Return a pre-training config for Gemma2 27B. |
|
Create a pre-training configuration for Gemma2 models. |
|
Return a finetuning config for Gemma2 2B. |
|
Return a finetuning config for Gemma2 9B. |
|
Return a finetuning config for Gemma2 27B. |
|
Common finetuning configuration for all Gemma2 models. |
API#
- class bridge.recipes.gemma.gemma2.Gemma2CommonKwargs#
Bases:
typing_extensions.TypedDictTyped options accepted by Gemma2 recipe helper functions.
Initialization
Initialize self. See help(type(self)) for accurate signature.
- hf_path: str#
None
- dir: Optional[str]#
None
- name: str#
None
- data_paths: Optional[List[str]]#
None
- data_args_path: Optional[str]#
None
- train_data_path: Optional[List[str]]#
None
- valid_data_path: Optional[List[str]]#
None
- test_data_path: Optional[str]#
None
- per_split_data_args_path: Optional[str]#
None
- mock: bool#
None
- tensor_model_parallel_size: int#
None
- pipeline_model_parallel_size: int#
None
- pipeline_dtype: Optional[torch.dtype]#
None
- virtual_pipeline_model_parallel_size: Optional[int]#
None
- context_parallel_size: int#
None
- sequence_parallel: bool#
None
- use_megatron_fsdp: bool#
None
- train_iters: int#
None
- global_batch_size: int#
None
- micro_batch_size: int#
None
- seq_length: int#
None
- lr: float#
None
- min_lr: float#
None
- lr_warmup_iters: int#
None
- lr_decay_iters: Optional[int]#
None
- eval_interval: int#
None
- save_interval: int#
None
- use_null_tokenizer: bool#
None
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#
None
- comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig]#
None
- class bridge.recipes.gemma.gemma2.Gemma2FinetuneKwargs#
Bases:
typing_extensions.TypedDictTyped options accepted by Gemma2 finetuning recipe helper functions.
Initialization
Initialize self. See help(type(self)) for accurate signature.
- hf_path: str#
None
- dir: Optional[str]#
None
- name: str#
None
- pretrained_checkpoint: Optional[str]#
None
- peft: Union[str, megatron.bridge.peft.base.PEFT, None]#
None
- packed_sequence: bool#
None
- train_iters: int#
None
- global_batch_size: Optional[int]#
None
- micro_batch_size: int#
None
- seq_length: Optional[int]#
None
- eval_interval: int#
None
- save_interval: int#
None
- finetune_lr: Optional[float]#
None
- min_lr: float#
None
- lr_warmup_iters: int#
None
- lr_decay_iters: Optional[int]#
None
- wandb_project: Optional[str]#
None
- wandb_entity: Optional[str]#
None
- wandb_exp_name: Optional[str]#
None
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#
None
- bridge.recipes.gemma.gemma2.gemma2_2b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma2.Gemma2CommonKwargs],
Return a pre-training config for Gemma2 2B.
Default parallelism: TP=2, PP=1
- bridge.recipes.gemma.gemma2.gemma2_9b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma2.Gemma2CommonKwargs],
Return a pre-training config for Gemma2 9B.
Default parallelism: TP=8, PP=1
- bridge.recipes.gemma.gemma2.gemma2_27b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma2.Gemma2CommonKwargs],
Return a pre-training config for Gemma2 27B.
Default parallelism: TP=8, PP=2
- bridge.recipes.gemma.gemma2._gemma2_common(
- hf_path: str,
- dir: Optional[str] = None,
- name: str = 'default',
- data_paths: Optional[List[str]] = None,
- data_args_path: Optional[str] = None,
- train_data_path: Optional[List[str]] = None,
- valid_data_path: Optional[List[str]] = None,
- test_data_path: Optional[List[str]] = None,
- per_split_data_args_path: Optional[str] = None,
- mock: bool = False,
- tensor_model_parallel_size: int = 1,
- pipeline_model_parallel_size: int = 1,
- pipeline_dtype: Optional[torch.dtype] = None,
- virtual_pipeline_model_parallel_size: Optional[int] = None,
- context_parallel_size: int = 1,
- sequence_parallel: bool = False,
- use_megatron_fsdp: bool = False,
- train_iters: int = 300000,
- global_batch_size: int = 32,
- micro_batch_size: int = 2,
- seq_length: int = 4096,
- lr: float = 0.0003,
- min_lr: float = 3e-05,
- lr_warmup_iters: int = 500,
- lr_decay_iters: Optional[int] = None,
- eval_interval: int = 500,
- save_interval: int = 500,
- use_null_tokenizer: bool = False,
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = 'bf16_mixed',
- comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
Create a pre-training configuration for Gemma2 models.
- bridge.recipes.gemma.gemma2.gemma2_2b_finetune_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma2.Gemma2FinetuneKwargs],
Return a finetuning config for Gemma2 2B.
Default configuration: 1 node, 8 GPUs
LoRA/DoRA: TP=1, PP=1, LR=1e-4
Full SFT: TP=1, PP=1, LR=5e-6
- bridge.recipes.gemma.gemma2.gemma2_9b_finetune_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma2.Gemma2FinetuneKwargs],
Return a finetuning config for Gemma2 9B.
Default configuration: 1 node, 8 GPUs
LoRA/DoRA: TP=1, PP=1, LR=1e-4
Full SFT: TP=4, PP=1, LR=5e-6
- bridge.recipes.gemma.gemma2.gemma2_27b_finetune_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma2.Gemma2FinetuneKwargs],
Return a finetuning config for Gemma2 27B.
Default configuration: 2 nodes (SFT) or 1 node (LoRA), 8 GPUs per node
LoRA/DoRA: TP=4, PP=1, LR=1e-4
Full SFT: TP=8, PP=2, LR=5e-6
- bridge.recipes.gemma.gemma2._gemma2_finetune_common(
- hf_path: str,
- dir: Optional[str] = None,
- name: str = 'default',
- tensor_model_parallel_size: int = 1,
- pipeline_model_parallel_size: int = 1,
- pipeline_dtype: Optional[torch.dtype] = None,
- virtual_pipeline_model_parallel_size: Optional[int] = None,
- context_parallel_size: int = 1,
- sequence_parallel: bool = False,
- pretrained_checkpoint: Optional[str] = None,
- peft: Union[str, megatron.bridge.peft.base.PEFT, None] = 'lora',
- packed_sequence: bool = False,
- train_iters: int = 100,
- global_batch_size: Optional[int] = None,
- micro_batch_size: int = 1,
- seq_length: Optional[int] = None,
- eval_interval: int = 50,
- save_interval: int = 100,
- finetune_lr: Optional[float] = None,
- min_lr: float = 0.0,
- lr_warmup_iters: int = 10,
- lr_decay_iters: Optional[int] = None,
- wandb_project: Optional[str] = None,
- wandb_entity: Optional[str] = None,
- wandb_exp_name: Optional[str] = None,
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = None,
Common finetuning configuration for all Gemma2 models.