bridge.recipes.gemma3_vl.gemma3_vl#

Module Contents#

Classes#

Gemma3VLCommonKwargs

Typed options accepted by Gemma3-VL recipe helper functions.

Functions#

gemma3_vl_4b_finetune_config

Return a fine-tuning config for Gemma3-VL 4B Instruct.

gemma3_vl_12b_finetune_config

Return a fine-tuning config for Gemma3-VL 12B Instruct.

gemma3_vl_27b_finetune_config

Return a fine-tuning config for Gemma3-VL 27B Instruct.

_gemma3_vl_common

Create a fine-tuning configuration for Gemma3-VL models using a given HuggingFace path.

API#

class bridge.recipes.gemma3_vl.gemma3_vl.Gemma3VLCommonKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Gemma3-VL recipe helper functions.

Initialization

Initialize self. See help(type(self)) for accurate signature.

hf_path: str#

None

dir: Optional[str]#

None

name: str#

None

train_data_path: Optional[List[str]]#

None

valid_data_path: Optional[List[str]]#

None

test_data_path: Optional[List[str]]#

None

dataset_type: Optional[str]#

None

image_folder: Optional[str]#

None

tokenizer_model: Optional[str]#

None

tensor_model_parallel_size: int#

None

pipeline_model_parallel_size: int#

None

pipeline_dtype: Optional[torch.dtype]#

None

virtual_pipeline_model_parallel_size: Optional[int]#

None

context_parallel_size: int#

None

sequence_parallel: bool#

None

use_megatron_fsdp: bool#

None

train_iters: int#

None

global_batch_size: int#

None

micro_batch_size: int#

None

seq_length: int#

None

lr: float#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: Optional[int]#

None

eval_interval: int#

None

save_interval: int#

None

precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#

None

comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig]#

None

freeze_language_model: bool#

None

freeze_vision_model: bool#

None

freeze_vision_projection: bool#

None

pretrained_checkpoint: Optional[str]#

None

peft: Optional[Union[str, megatron.bridge.peft.base.PEFT]]#

None

finetune_lr: float#

None

wandb_project: Optional[str]#

None

wandb_entity: Optional[str]#

None

wandb_exp_name: Optional[str]#

None

bridge.recipes.gemma3_vl.gemma3_vl.gemma3_vl_4b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma3_vl.gemma3_vl.Gemma3VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Gemma3-VL 4B Instruct.

Default configuration: 1 node, 8 GPUs

  • LoRA/DoRA: TP=1, PP=1, LR=1e-4

  • Full SFT: TP=1, PP=1, LR=5e-6

See _gemma3_vl_common for the full list of parameters.

bridge.recipes.gemma3_vl.gemma3_vl.gemma3_vl_12b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma3_vl.gemma3_vl.Gemma3VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Gemma3-VL 12B Instruct.

Default configuration: 1 node, 8 GPUs

  • LoRA/DoRA: TP=1, PP=1, LR=1e-4

  • Full SFT: TP=4, PP=1, LR=5e-6

See _gemma3_vl_common for the full list of parameters.

bridge.recipes.gemma3_vl.gemma3_vl.gemma3_vl_27b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma3_vl.gemma3_vl.Gemma3VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Gemma3-VL 27B Instruct.

Default configuration: 2 nodes, 16 GPUs total

  • LoRA/DoRA: TP=4, PP=1, LR=1e-4

  • Full SFT: TP=8, PP=2, LR=5e-6

See _gemma3_vl_common for the full list of parameters.

bridge.recipes.gemma3_vl.gemma3_vl._gemma3_vl_common(
hf_path: str,
dir: Optional[str] = None,
name: str = 'gemma3_vl_finetune',
pretrained_checkpoint: Optional[str] = None,
train_data_path: Optional[List[str]] = None,
valid_data_path: Optional[List[str]] = None,
test_data_path: Optional[List[str]] = None,
dataset_type: Optional[str] = None,
image_folder: Optional[str] = None,
tokenizer_model: Optional[str] = None,
tensor_model_parallel_size: int = 2,
pipeline_model_parallel_size: int = 1,
pipeline_dtype: Optional[torch.dtype] = None,
virtual_pipeline_model_parallel_size: Optional[int] = None,
context_parallel_size: int = 1,
sequence_parallel: bool = False,
use_megatron_fsdp: bool = False,
train_iters: int = 300000,
global_batch_size: int = 32,
micro_batch_size: int = 2,
seq_length: int = 4096,
lr: float = 0.0003,
min_lr: float = 3e-05,
lr_warmup_iters: int = 500,
lr_decay_iters: Optional[int] = None,
eval_interval: int = 500,
save_interval: int = 500,
precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = 'bf16_mixed',
comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
freeze_language_model: bool = False,
freeze_vision_model: bool = False,
freeze_vision_projection: bool = False,
peft: Optional[Union[str, megatron.bridge.peft.base.PEFT]] = None,
finetune_lr: Optional[float] = None,
wandb_project: Optional[str] = None,
wandb_entity: Optional[str] = None,
wandb_exp_name: Optional[str] = None,
) megatron.bridge.training.config.ConfigContainer#

Create a fine-tuning configuration for Gemma3-VL models using a given HuggingFace path.

The dataset pipeline is based on the Gemma3-VL architecture. To train multimodal tokens, ensure your preprocessed data includes appropriate image placeholders.