bridge.recipes.nemotron_vl.nemotron_nano_v2_vl#
Module Contents#
Functions#
Create a pre-training configuration for Nemotron Nano V2 VL. |
|
Create a finetuning configuration for Nemotron Nano V2 VL. |
API#
- bridge.recipes.nemotron_vl.nemotron_nano_v2_vl.nemotron_nano_v2_vl_12b_pretrain_config(
- dir: Optional[str] = None,
- name: str = 'nemotron_nano_v2_vl_pretrain',
- hf_model_path: str = 'nvidia/NVIDIA-Nemotron-Nano-12B-v2-VL-BF16',
- dataset_type: Optional[str] = None,
- mock: bool = False,
- dataset_maker_name: str = 'make_cord_v2_dataset',
- tensor_parallelism: int = 4,
- pipeline_parallelism: int = 1,
- pipeline_parallelism_dtype: Optional[torch.dtype] = None,
- virtual_pipeline_parallelism: Optional[int] = None,
- context_parallelism: int = 1,
- sequence_parallelism: bool = False,
- train_iters: int = 300000,
- global_batch_size: int = 32,
- micro_batch_size: int = 2,
- seq_length: int = 4096,
- lr: float = 0.0003,
- min_lr: float = 3e-05,
- lr_warmup_iters: int = 500,
- lr_decay_iters: Optional[int] = None,
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = 'bf16_mixed',
- comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
- save_interval: Optional[int] = 200,
Create a pre-training configuration for Nemotron Nano V2 VL.
Note: Current dataset pipeline is text-centric. To train multimodal tokens, your preprocessed data should include placeholder tokens (e.g.,
) as needed.
- bridge.recipes.nemotron_vl.nemotron_nano_v2_vl.nemotron_nano_v2_vl_12b_finetune_config(
- *,
- pretrained_checkpoint: str = '',
- lora_on_language_model: bool = False,
- lora_on_vision_model: bool = False,
- save_checkpoint_dir: Optional[str] = None,
- **pretrain_kwargs,
Create a finetuning configuration for Nemotron Nano V2 VL.
This helper wraps :func:
nemotron_nano_v2_vl_12b_pretrain_config, forwarding all keyword arguments to it while additionally wiring up the :class:CheckpointConfigfor finetuning from a givenpretrained_checkpoint.Parameters: pretrained_checkpoint: str Path to a Megatron-Bridge checkpoint (or a directory produced by
convert_ckpt_hf_to_megatron) that will be loaded before training. save_checkpoint_dir: str | None, defaultrun_output_dir / "checkpoints"Directory where new checkpoints will be saved / resumed from. If not provided, we reuse the default path chosen by nemotron_nano_v2_vl_12b_pretrain_config. lora_on_language_model: bool = True Whether to apply PEFT to the language model. lora_on_vision_model: bool = True Whether to apply PEFT to the vision model. **pretrain_kwargs: Any Additional keyword arguments are forwarded verbatim to :func:nemotron_nano_v2_vl_12b_pretrain_configto customise the base recipe (e.g. batch size, learning rate, parallelism).