Retriever Pipeline Targets#
Retriever pipelines are used to retrieve relevant documents based on a query. For more information, refer to Retriever Evaluation Type.
Embedding Only#
In an embedding-only scenario, an embedding model is used to perform dense retrieval of documents.
curl -X "POST" "${EVALUATOR_SERVICE_URL}/v1/evaluation/targets" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '
{
"type": "retriever",
"name": "my-target-retriever-1",
"namespace": "my-organization",
"retriever": {
"pipeline": {
"query_embedding_model": {
"api_endpoint": {
"url": "<my-query-embedding-url>",
"model_id": "<my-query-embedding-model>"
}
},
"index_embedding_model": {
"api_endpoint": {
"url": "<my-index-embedding-url>",
"model_id": "<my-index-embedding-model>"
}
},
"top_k": 5
}
}
}'
data = {
"type": "retriever",
"name": "my-target-retriever-1",
"namespace": "my-organization",
"retriever": {
"pipeline": {
"query_embedding_model": {
"api_endpoint": {
"url": "<my-query-embedding-url>",
"model_id": "<my-query-embedding-model>"
}
},
"index_embedding_model": {
"api_endpoint": {
"url": "<my-index-embedding-url>",
"model_id": "<my-index-embedding-model>"
}
},
"top_k": 5
}
}
}
endpoint = f"{EVALUATOR_SERVICE_URL}/v1/evaluation/targets"
response = requests.post(endpoint, json=data).json()
Embedding + Reranking#
In an embedding + reranking scenario, the documents retrieved by the embedding model are reranked by the reranking model.
curl -X "POST" "${EVALUATOR_SERVICE_URL}/v1/evaluation/targets" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '
{
"type": "retriever",
"name": "my-target-retriever-2",
"namespace": "my-organization",
"retriever": {
"pipeline": {
"query_embedding_model": {
"api_endpoint": {
"url": "<my-query-embedding-url>",
"model_id": "<my-query-embedding-model>"
}
},
"index_embedding_model": {
"api_endpoint": {
"url": "<my-index-embedding-url>",
"model_id": "<my-index-embedding-model>"
}
},
"reranker_model": {
"api_endpoint": {
"url": "<my-ranker-url>",
"model_id": "<my-ranker-model>"
}
},
"top_k": 5
}
}
}'
data = {
"type": "retriever",
"name": "my-target-retriever-2",
"namespace": "my-organization",
"retriever": {
"pipeline": {
"query_embedding_model": {
"api_endpoint": {
"url": "<my-query-embedding-url>",
"model_id": "<my-query-embedding-model>"
}
},
"index_embedding_model": {
"api_endpoint": {
"url": "<my-index-embedding-url>",
"model_id": "<my-index-embedding-model>"
}
},
"reranker_model": {
"api_endpoint": {
"url": "<my-ranker-url>",
"model_id": "<my-ranker-model>"
}
},
"top_k": 5
}
}
}
endpoint = f"{EVALUATOR_SERVICE_URL}/v1/evaluation/targets"
response = requests.post(endpoint, json=data).json()