Create Customization Target#
Prerequisites#
Before you can create a customization target, make sure that you have:
Access to the NeMo Customizer service
The address of the base model you want to customize (
model_uri
)If using a HuggingFace-style (
hf://
)model_uri
, you must provide a HuggingFace endpoint (such ashttps://huggingface.co
); if not specified, the Data Store’s HF-compatible endpoint is used (http://<datastore-host>/v1/hf
)
Review the customization target value reference guide to obtain the required values for the model you want to use.
Options#
You can create a customization target in the following ways.
API#
Submit a POST request to
/v1/customization/targets
.curl -X POST \ "${CUSTOMIZER_SERVICE_URL}/v1/customization/targets" \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "name": "llama-3.1-8b-instruct@2.0", "namespace": "meta", "description": "Customization target for Meta Llama 3.1 8B", "enabled": true, "base_model": "meta/llama-3.1-8b", "model_path": "llama-3_1-8b-instruct_2_0", "model_uri": "ngc://nvidia/nemo/llama-3_1-8b:2.0", "hf_endpoint": "<your HF endpoint>", "tokenizer": {}, "num_parameters": 123456789, "precision": "bf16-mixed", "project": "urn:your-project-id" }' | jq
Review the response.
Example Response
{ "id": "cust-target-abc123", "name": "llama-3.1-8b-instruct@2.0", "namespace": "meta", "description": "Customization target for Meta Llama 3.1 8B", "enabled": true, "base_model": "meta/llama-3.1-8b", "model_path": "llama-3_1-8b-instruct_2_0", "model_uri": "ngc://nvidia/nemo/llama-3_1-8b:2.0", "hf_endpoint": "<your HF endpoint>", "tokenizer": {}, "num_parameters": 123456789, "precision": "bf16-mixed", "status": "created", "ownership": {}, "custom_fields": {}, "created_at": "2024-05-08T12:00:00Z", "updated_at": "2024-05-08T12:00:00Z" }
Tip
Model files are large and can take time to download from the
model_uri
. You can check the status of the download by getting target details and reviewing thestatus
.Note
If you’re re-creating a target with the same name after deleting it, ensure that the model download job for the deleted target doesn’t already exist. The model download job has a TTL of 10 minutes and is automatically removed after this period expires.