bridge.recipes.qwen.qwen3_next#

Module Contents#

Classes#

Qwen3NextCommonKwargs

Typed options accepted by Qwen3-Next recipe helpers.

Qwen3NextFinetuneKwargs

Typed options accepted by Qwen3-Next finetuning recipe helper functions.

Functions#

qwen3_next_80b_a3b_pretrain_config

Return a pre-training config for Qwen3-Next 80B-A3B.

_qwen3_next_common

Create a pre-training configuration for Qwen3-Next models using a given HuggingFace path.

qwen3_next_80b_a3b_finetune_config

Return a finetuning config for Qwen3-Next 80B-A3B.

_qwen3_next_finetune_common

Common finetuning configuration for Qwen3-Next model.

API#

class bridge.recipes.qwen.qwen3_next.Qwen3NextCommonKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Qwen3-Next recipe helpers.

Initialization

Initialize self. See help(type(self)) for accurate signature.

hf_path: str#

None

dir: str | None#

None

name: str#

None

data_paths: list[str] | None#

None

data_args_path: str | None#

None

train_data_path: list[str] | None#

None

valid_data_path: list[str] | None#

None

test_data_path: list[str] | None#

None

per_split_data_args_path: str | None#

None

mock: bool#

None

tensor_model_parallel_size: int#

None

pipeline_model_parallel_size: int#

None

pipeline_dtype: torch.dtype | None#

None

virtual_pipeline_model_parallel_size: int | None#

None

context_parallel_size: int#

None

expert_model_parallel_size: int | None#

None

expert_tensor_parallel_size: int#

None

sequence_parallel: bool#

None

use_megatron_fsdp: bool#

None

enable_recompute: bool#

None

account_for_embedding_in_pipeline_split: bool#

None

account_for_loss_in_pipeline_split: bool#

None

mtp_num_layers: int | None#

None

mtp_loss_scaling_factor: float | None#

None

train_iters: int#

None

global_batch_size: int#

None

micro_batch_size: int#

None

seq_length: int#

None

lr: float#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: int | None#

None

eval_interval: int#

None

save_interval: int#

None

use_null_tokenizer: bool#

None

precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None#

None

comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None#

None

moe_flex_dispatcher_backend: str | None#

None

disable_jit_fuser: bool#

None

class bridge.recipes.qwen.qwen3_next.Qwen3NextFinetuneKwargs#

Bases: bridge.recipes.qwen.qwen3_next.Qwen3NextCommonKwargs

Typed options accepted by Qwen3-Next finetuning recipe helper functions.

Initialization

Initialize self. See help(type(self)) for accurate signature.

pretrained_checkpoint: str | None#

None

peft: str | megatron.bridge.peft.base.PEFT | None#

None

packed_sequence: bool#

None

dataset_path: str | None#

None

finetune_lr: float#

None

wandb_project: str | None#

None

wandb_entity: str | None#

None

wandb_exp_name: str | None#

None

bridge.recipes.qwen.qwen3_next.qwen3_next_80b_a3b_pretrain_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_next.Qwen3NextCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a pre-training config for Qwen3-Next 80B-A3B.

See _qwen3_next_common for the full list of parameters.

bridge.recipes.qwen.qwen3_next._qwen3_next_common(
hf_path: str,
dir: str | None = None,
name: str = 'default',
data_paths: list[str] | None = None,
data_args_path: str | None = None,
train_data_path: list[str] | None = None,
valid_data_path: list[str] | None = None,
test_data_path: list[str] | None = None,
per_split_data_args_path: str | None = None,
mock: bool = False,
path_to_cache: str | None = None,
tensor_model_parallel_size: int = 4,
pipeline_model_parallel_size: int = 2,
pipeline_dtype: torch.dtype | None = torch.bfloat16,
virtual_pipeline_model_parallel_size: int | None = None,
context_parallel_size: int = 1,
expert_model_parallel_size: int | None = 4,
expert_tensor_parallel_size: int = 1,
sequence_parallel: bool = True,
use_megatron_fsdp: bool = False,
enable_recompute: bool = False,
account_for_embedding_in_pipeline_split: bool = False,
account_for_loss_in_pipeline_split: bool = False,
mtp_num_layers: int | None = 1,
mtp_loss_scaling_factor: float | None = 0.1,
train_iters: int = 300000,
global_batch_size: int = 32,
micro_batch_size: int = 2,
seq_length: int = 4096,
lr: float = 0.0003,
min_lr: float = 3e-05,
lr_warmup_iters: int = 500,
lr_decay_iters: int | None = None,
eval_interval: int = 500,
save_interval: int = 500,
use_null_tokenizer: bool = False,
precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None = None,
comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None = None,
moe_flex_dispatcher_backend: str | None = None,
disable_jit_fuser: bool | None = None,
) megatron.bridge.training.config.ConfigContainer#

Create a pre-training configuration for Qwen3-Next models using a given HuggingFace path.

Parameters:
  • hf_path (str) – HuggingFace model path (e.g., β€œQwen/Qwen3-Next-80B-A3B-Instruct”).

  • dir (str | None) – Base directory for saving logs and checkpoints.

  • name (str) – Name of the pre-training run.

  • data_paths (list[str] | None) – List of paths to dataset files. If None, mock data will be used.

  • data_args_path (str | None) – Path to file containing data arguments.

  • train_data_path (list[str] | None) – List of training data paths.

  • valid_data_path (list[str] | None) – List of validation data paths.

  • test_data_path (list[str] | None) – List of test data paths.

  • per_split_data_args_path (str | None) – Path to JSON file with per-split data configuration.

  • mock (bool) – Whether to use mock data. If True, ignores data_paths.

  • tensor_model_parallel_size (int) – Degree of tensor model parallelism.

  • pipeline_model_parallel_size (int) – Degree of pipeline model parallelism.

  • pipeline_dtype (torch.dtype | None) – Data type for pipeline parallelism.

  • virtual_pipeline_model_parallel_size (int | None) – Size of virtual pipeline parallelism.

  • context_parallel_size (int) – Degree of context parallelism to be passed to model_config.

  • expert_model_parallel_size (int | None) – Degree of expert parallelism for MoE.

  • expert_tensor_parallel_size (int) – Expert tensor parallelism for MoE.

  • sequence_parallel (bool) – Whether to use sequence parallelism.

  • use_megatron_fsdp (bool) – Whether to use Megatron FSDP.

  • enable_recompute (bool) – Whether to enable recompute for memory optimization.

  • account_for_embedding_in_pipeline_split (bool) – Whether to account for embedding in pipeline split.

  • account_for_loss_in_pipeline_split (bool) – Whether to account for loss in pipeline split.

  • mtp_num_layers (int | None) – Number of layers for MTP.

  • mtp_loss_scaling_factor (float | None) – Loss scaling factor for MTP.

  • train_iters (int) – Total number of training iterations.

  • global_batch_size (int) – Global batch size for training.

  • micro_batch_size (int) – Micro batch size for training.

  • seq_length (int) – Sequence length for training data.

  • lr (float) – Learning rate.

  • min_lr (float) – Minimum learning rate for cosine decay.

  • lr_warmup_iters (int) – Number of warmup iterations for the learning rate.

  • lr_decay_iters (int | None) – Number of iterations over which to decay the LR.

  • precision_config (MixedPrecisionConfig | str | None) – Precision configuration for the model.

  • comm_overlap_config (CommOverlapConfig | None) – Communication overlap configuration.

  • moe_flex_dispatcher_backend (str | None) – Token dispatcher type [deepep, hybridep].

  • disable_jit_fuser (bool) – Whether to disable the JIT fuser. Necessary for Qwen3-Next to work on Blackwell.

Returns:

Configuration for pre-training.

Return type:

ConfigContainer

bridge.recipes.qwen.qwen3_next.qwen3_next_80b_a3b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_next.Qwen3NextFinetuneKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a finetuning config for Qwen3-Next 80B-A3B.

Default configuration: 8 nodes, 64 GPUs total

  • Full SFT: TP=1, PP=1, EP=8, LR=5e-6 (with recompute)

bridge.recipes.qwen.qwen3_next._qwen3_next_finetune_common(
hf_path: str,
dir: str | None = None,
name: str = 'default',
dataset_path: str | None = None,
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
pipeline_dtype: torch.dtype | None = torch.bfloat16,
virtual_pipeline_model_parallel_size: int | None = None,
context_parallel_size: int = 1,
expert_model_parallel_size: int | None = 8,
expert_tensor_parallel_size: int = 1,
sequence_parallel: bool = False,
use_megatron_fsdp: bool = False,
enable_recompute: bool = False,
pretrained_checkpoint: str | None = None,
peft: str | megatron.bridge.peft.base.PEFT | None = None,
packed_sequence: bool = False,
train_iters: int = 1000,
global_batch_size: int | None = None,
micro_batch_size: int = 1,
seq_length: int = 2048,
eval_interval: int = 30,
save_interval: int = 50,
finetune_lr: float = 5e-06,
min_lr: float = 0.0,
lr_warmup_iters: int = 50,
lr_decay_iters: int | None = None,
wandb_project: str | None = None,
wandb_entity: str | None = None,
wandb_exp_name: str | None = None,
precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None = 'bf16_mixed',
comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None = None,
moe_flex_dispatcher_backend: str | None = None,
disable_jit_fuser: bool | None = None,
) megatron.bridge.training.config.ConfigContainer#

Common finetuning configuration for Qwen3-Next model.