Basic Audit Target#
When you run an audit job in NVIDIA NeMo Auditor, you create a separate audit target and audit configuration for the job.
The target specifies the model name, model type, and free-form key-value pairs for model-specific inference options. For more information, refer to Schema for Audit Targets.
The following target references the DeepSeek R1 Distill Llama 8B model from a locally-accessible NIM microservice.
The service name for the LLM container is llm.
Set AUDITOR_BASE_URL to specify the service:
$ export AUDITOR_BASE_URL=http://localhost:8080
import os
from nemo_microservices import NeMoMicroservices
client = NeMoMicroservices(base_url=os.getenv("AUDITOR_BASE_URL"))
target = client.beta.audit.targets.create(
namespace="default",
name="demo-basic-target",
type="nim.NVOpenAIChat",
model="deepseek-ai/deepseek-r1-distill-llama-8b",
options={
"nim": {
"skip_seq_start": "<think>",
"skip_seq_end": "</think>",
"max_tokens": 3200,
"uri": "https://integrate.api.nvidia.com/v1/"
}
}
)
print(target.model_dump_json(indent=2))
curl -X POST "${AUDITOR_BASE_URL}/v1beta1/audit/targets" \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"namespace": "default",
"name": "demo-basic-target",
"type": "nim.NVOpenAIChat",
"model": "deepseek-ai/deepseek-r1-distill-llama-8b",
"options": {
"nim": {
"skip_seq_start": "<think>",
"skip_seq_end": "</think>",
"max_tokens": 3200,
"uri": "https://integrate.api.nvidia.com/v1/"
}
}
}' | jq