ai4med.components.optimizers package
-
class
Adam
(**args) Bases:
ai4med.components.optimizers.optimizer.Optimizer
Optimizer that implements the Adam algorithm. This uses tf’s AdamOptimizer with details and args information at: https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer
-
get_optimizer
(lr) This is the required method that an optimizer component must implement.
- Parameters
lr – the learning rate
- Returns
optimizer function
-
-
class
Momentum
(**args) Bases:
ai4med.components.optimizers.optimizer.Optimizer
Optimizer that implements the Momentum algorithm (SGD + momentum). This uses the tf MomentumOptimizer with details and args information at: https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/MomentumOptimizer
-
get_optimizer
(lr) This is the required method that an optimizer component must implement.
- Parameters
lr – the learning rate
- Returns
optimizer function
-
-
class
NovoGrad
(**args) Bases:
ai4med.components.optimizers.optimizer.Optimizer
Optimizer that implements the NovoGrad algorithm. Details and args information at:
ai4med.libs.optimizers.novograd
-
get_optimizer
(lr) Returns optimizer function
- Parameters
lr – learning rate
Returns: NovoGrad Optimizer function
-
-
class
Optimizer
(**args) Bases:
ai4med.common.graph_component.GraphComponent
Base class of optimizer component.
An optimizer component is also a GraphComponent that builds part of the computation graph.
-
build
(build_ctx: ai4med.common.build_ctx.BuildContext) A graph building component must implement this method to build parts of the computation graph. While building, this method can use any objects in the build_ctx and put objects into the build_ctx. Therefore, different graph building components can use the build_ctx to share objects.
- Parameters
build_ctx (BuildContext) – the build context.
Returns: tensor(s) built
-
abstract
get_optimizer
(lr) This is the required method that an optimizer component must implement.
- Parameters
lr – the learning rate
- Returns
optimizer function
-
-
is_valid_regex
(x: str) → bool