nvmidl.apps package
- nvmidl.apps.automl package
- Submodules
- nvmidl.apps.automl.base_mmar_exec module
- nvmidl.apps.automl.constants module
- nvmidl.apps.automl.dummy_controller module
- nvmidl.apps.automl.dummy_handler module
- nvmidl.apps.automl.fake_clara_train module
- nvmidl.apps.automl.mmar_exec module
- nvmidl.apps.automl.mmar_handler module
- nvmidl.apps.automl.mmar_trainer module
- nvmidl.apps.automl.ngc_exec module
- nvmidl.apps.automl.ssu module
- nvmidl.apps.automl.test_rec module
- nvmidl.apps.automl.test_ssu module
- nvmidl.apps.automl.test_train module
- nvmidl.apps.automl.train module
- Module contents
- nvmidl.apps.fed_learn package
- Subpackages
- Submodules
- nvmidl.apps.fed_learn.fed_optimizer module
- nvmidl.apps.fed_learn.fl_conf module
- nvmidl.apps.fed_learn.test_connection module
- Module contents
- Subpackages
DLMed script for converting dicom files.
-
contain_dicom
(path)
-
get_dicom_dir_list
(source_dir)
-
get_image_file_list
(source_dir, ext)
-
resample_image
(img, tgt_res)
-
standardize_ext
(ext)
-
main
()
-
export
(model_name, model_file_format, model_file_path, input_node_names, output_node_names, sm_tags='inference', checkpoint_ext='.ckpt', meta_file_ext='.meta', regular_frozen_file_ext='.fzn.pb', trt_file_ext='.trt.pb', max_batch_size=4, is_dynamic_op=False, minimum_segment_size=50, trt_precision_mode='FP32', trtis_export=False, trtis_model_name='tlt_model', trtis_input_shape=None) Export/convert a specified checkpoint to TRT-optimized frozen graph file
A checkpoint contains 3 files. The names of the 3 files for model ‘foo’ are named like these:
The graph meta file: foo.ckpt.meta The data/weight file: foo.ckpt.data An index file: foo.ckpt.index
The generated regular frozen file name: foo.fzn.pb The generated TRT file name: foo.trt.pb
- Parameters
minimum_segment_size – minimum segment size to be used for TRT optimization
sm_tags – meta tags for saved model format
model_file_format – model file format: CKPT (checkpoint) or SM (saved model)
is_dynamic_op – whether to use dynamic mode when trt-optimizing graph
max_batch_size – maximum batch size allowed by the TRT graph
model_name – name of the model
model_file_path – file directory that contains model files
input_node_names – comma separated input node names in the graph
output_node_names – comma separated output node names in the graph
checkpoint_ext – file extension of the checkpoint files
meta_file_ext – file extension of the graph meta file
regular_frozen_file_ext – file extension of the regular frozen graph file
trt_file_ext – file extension of the TRT-optimized graph file
trt_precision_mode – precision mode of the TRT optimization
trtis_export – bool for requesting generate config.pbtxt for TRTIS
trtis_model_name – Unique model name for TRTIS
trtis_input_shape – list or tuple to specifiy concrete input shape
- Returns
full names of the frozen and TRT-optimized files
-
main
()
-
normalize_string
(item_data, item_name)
-
trtis_config
(meta_file, ckpt_file, trtis_model_name, output_path='.', max_batch_size=1, trtis_input_shape=None) Generate config.pbtxt for TRTIS
- Parameters
meta_file – Full path to checkpoint metafile
ckpt_file – Full path to checkpoint datafile
trtis_model_name – A unique model name inside one TRTIS instance
output_path – Optional string to store config.pbtxt
max_batch_size – Optional parameter for TRTIS to allocate necessary workspace
-
generate_mmar
(dest_path, task, include_fl, include_automl)
-
main
()
-
class
TrainEnv
(mmar_root, wf_config_file_name, env_config_file_name, log_config_file_name, kv_list) Bases:
object
-
main
()
-
train
(e: nvmidl.apps.mp_train.TrainEnv)
-
main
()