Evaluation Target Schema Reference#
This page provides a complete schema reference for evaluation targets, including all fields, data types, and nested properties. Use this reference when you need detailed technical specifications for API requests or to understand the full structure of target objects.
When to use this page:
You need detailed field specifications for API integration
You want to understand all available configuration options
You are troubleshooting schema validation errors
You need to reference specific nested object structures
For task-oriented guidance, refer to Create Evaluation Target for step-by-step instructions on creating targets, or browse the target type guides for conceptual overviews and examples.
Important
Each target is uniquely identified by a combination of namespace and name. For example, my-organization/my-target.
Available Target Types#
Evaluation targets define what you’re evaluating. NeMo Evaluator supports the following target types:
Primary Schemas#
These are the main schemas you’ll use when creating targets or reading target information from the API.
EvaluationTargetInput#
Use this schema when creating a new evaluation target through POST requests to the /evaluation/targets endpoint.
Properties
^[\w\-\+.@:]*$defaultmodelcached_outputsretrieverragrowsdatasetProperties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.Properties
Properties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
Properties
Properties
Properties
Properties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.descProperties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
string - A reference to DatasetInputEV.object - A dataset that can be used for fine-tuning or evaluation.Properties
{}EvaluationTargetOutput#
Use this schema to understand evaluation target responses from GET requests when retrieving or managing existing targets.
Properties
1.0eval-targetdefaultProperties
{}^[\w\-\+.@:]*$modelcached_outputsretrieverragrowsdatasetProperties
string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.Properties
Properties
string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
Properties
Properties
Properties
Properties
string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
string - A reference to ModelOutputEV.object - Information about a machine learning model, typically an LLM.descProperties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
string - A reference to DatasetEV.object - A dataset that can be used for fine-tuning or evaluation.Nested Configuration Schemas#
The schemas in this section define inline objects you can provide when creating evaluation targets. Use these schemas when you want to configure resources directly in the target creation request rather than referencing existing resources by name.
Understanding String References vs Inline Objects#
When creating an evaluation target, fields like model, rag, retriever, and dataset accept two types of values:
String reference – Reference an existing resource by namespace and name (for example,
"my-org/my-model")Inline object – Provide complete configuration using one of the schemas below
Use string references when you have pre-configured resources. Use inline objects when you want to define everything in a single request.
Example using a model target:
# Option 1: Reference an existing model by name
client.evaluation.targets.create(
type="model",
model="my-org/existing-model"
)
# Option 2: Provide inline model configuration (uses ModelInput schema)
client.evaluation.targets.create(
type="model",
model={
"inference": {
"url": "https://api.example.com/v1/chat/completions",
"model_id": "meta/llama-3.1-8b-instruct",
"format": "nim"
}
}
)
This pattern applies to all target types—use string references for existing resources or inline objects for complete configuration in a single request.
Target Type Configuration Schemas#
These schemas define the structure of inline objects for different target types.
ModelInput#
Define an inline model configuration in the model field when creating a target with type: "model".
Properties
^[\w\-\+.@:]*$defaultProperties
Properties
int8bf16fp16fp32fp8-mixedbf16-mixednemotrt_llmvllmfaster_transformerhugging_facecreatedupload_failedupload_completedstring - A reference to Model.object - Information about a machine learning model, typically an LLM.Properties
nimopenailama_stacknimProperties
loralora_mergedall_weightsProperties
Properties
Properties
Properties
Properties
Properties
1.0guardraildefaultProperties
{}^[\w\-\+.@:]*$mainProperties
Properties
Properties
Properties
Truechattextchat[{'type': 'general', 'content': 'Below is a conversation between a helpful AI assistant and a user. The bot is designed to generate human-like text based on the input that it receives. The bot is talkative and provides lots of specific details. If the bot does not know the answer to a question, it truthfully says it does not know.'}]Properties
user "Hello there!"
express greeting
bot express greeting
"Hello! How can I assist you today?"
user "What can you do for me?"
ask about capabilities
bot respond about capabilities
"As an AI assistant, I can help you with a wide range of tasks. This includes question answering on various topics, generating text for various purposes and providing suggestions based on your preferences."
user "Tell me a bit about the history of NVIDIA."
ask general question
bot response for general question
"NVIDIA is a technology company that specializes in designing and manufacturing graphics processing units (GPUs) and other computer hardware. The company was founded in 1993 by Jen-Hsun Huang, Chris Malachowsky, and Curtis Priem."
user "tell me more"
request more information
bot provide more information
"Initially, the company focused on developing 3D graphics processing technology for the PC gaming market. In 1999, NVIDIA released the GeForce 256, the world's first GPU, which was a major breakthrough for the gaming industry. The company continued to innovate in the GPU space, releasing new products and expanding into other markets such as professional graphics, mobile devices, and artificial intelligence."
user "thanks"
express appreciation
bot express appreciation and offer additional help
"You're welcome. If you have any more questions or if there's anything else I can help you with, please don't hesitate to ask."
Properties
object - Template for a message structure.string16000standardstandard0.001False1.0Properties
Properties
Properties
FalseProperties
Properties
Properties
Properties
Properties
Properties
all_passany_passall_passProperties
Properties
all_passany_passall_passProperties
Properties
*0.2Properties
*0.2Properties
*0.2Properties
89.791845.65classifyProperties
^(reject|omit)$rejectProperties
http://localhost:8080/process/textProperties
Properties
Properties
Properties
http://localhost:8080/process/text0.10.05Properties
https://gateway.app.clavata.ai:8443ANYALLANYProperties
Properties
Properties
Properties
Properties
Properties
Properties
Properties
https://api.xdr.trendmicro.com/beta/aiSecurity/guardProperties
FalseProperties
FalseProperties
False20050TrueFalseProperties
Properties
Properties
FalseTrueProperties
FalseProperties
Properties
FalseProperties
FalseFalseProperties
FalseProperties
FileSystemopentelemetryFalseProperties
{}RAGTargetInput#
Define an inline RAG pipeline configuration in the rag field when creating a target with type: "rag".
Properties
Properties
Properties
Properties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.descProperties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
RetrieverTargetInput#
Define an inline retriever configuration in the retriever field when creating a target with type: "retriever".
Properties
Properties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
Pipeline Configuration Schemas#
These schemas define pipeline-specific settings used within RAG and retriever target configurations.
RAGPipelineDataInput#
Nested pipeline configuration schema used within RAGTargetInput. Defines retrieval and generation settings for RAG pipelines.
Properties
Properties
Properties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.10Properties
Properties
1.0defaultProperties
{}^[\w\-\+.@:]*$mainProperties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.descRetrieverPipelineDataInput#
Nested pipeline configuration schema used within RetrieverTargetInput. Defines embedding and reranking settings for retriever pipelines.
Properties
string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.string - A reference to ModelInputEV.object - Information about a machine learning model, typically an LLM.10Data Source Schemas#
Dataset#
Define an inline dataset configuration in the dataset field when creating a target with type: "dataset".
Properties
^[\w\-\+.@:]*$default