ai4med.workflows.evaluators package
-
class
BulkEvaluator
(data_dict_list: (, ) , data_prop: ai4med.common.data_prop.DataProperty, model_loader: ai4med.components.model_loaders.model_loader.ModelLoader, inferer: ai4med.components.inferers.inferer.Inferer, batch_size=1, pre_transforms=None, post_transforms=None, output_writers=None, label_transforms=None, val_metrics=None, do_validation=False, output_infer_result=True, image_key_name='image', overwrite_previous_result=True, image_dtype='float32', label_dtype='float32', data_list_key=None) Bases:
ai4med.workflows.evaluators.evaluator.Evaluator
The BulkEvaluator evaluates a set of data files. It can do both inference and validation.
- Parameters
data_dict_list – list of data dicts. Each dict contains an image element and a label element,
of which are complete paths to the data files. (both) –
model_loader – loader for loading pre-trained model file
inferer – inferer for making inference on images
batch_size (int) – size of batch. Images are batched for inference. Note that batch_size > 1 may not
in all cases. Specifically (work) –
does not currently support batch_size > 1. (ScanWindowInferer) –
pre_transforms – transforms to be applied to image before inference
post_transforms – transforms to be applied to result of inference
output_writers – list of output eval_writers
label_transforms – transforms to be applied to label
val_metrics – list of validation metrics
do_validation (bool) – whether or not to do validation
output_infer_result (bool) – whether or not to write inference results to disk
image_key_name (str) – key name for image data in data dict list
overwrite_previous_result (bool) – whether or not to overwrite results from previous runs
image_dtype (str) –
-
close
()
-
evaluate
(inputs=None) Implements the required ‘evaluate’ method of evaluator.
Performs inference and/or validation on data samples defined in the data dict list.
- Parameters
inputs – not used
Returns:
-
reset
()
-
class
Evaluator
Bases:
abc.ABC
-
abstract
close
()
-
abstract
evaluate
(inputs) Evaluate the inputs to generate output :param inputs: input values to be evaluated :return: evaluation result
-
abstract