cupynumeric.meshgrid#
- cupynumeric.meshgrid( ) tuple[ndarray, ...] #
Return a tuple of coordinate matrices from coordinate vectors.
Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn
- Parameters:
x1 (array_like) – 1-D arrays representing the coordinates of a grid.
x2 (array_like) – 1-D arrays representing the coordinates of a grid.
... (array_like) – 1-D arrays representing the coordinates of a grid.
xn (array_like) – 1-D arrays representing the coordinates of a grid.
indexing ({'xy', 'ij'}, optional) – Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See Notes for more details.
sparse (bool, optional) –
If True the shape of the returned coordinate array for dimension i is reduced from
(N1, ..., Ni, ... Nn)
to(1, ..., 1, Ni, 1, ..., 1)
. These sparse coordinate grids are intended to be use with broadcasting. When all coordinates are used in an expression, broadcasting still leads to a fully-dimensonal result array.Default is False.
copy (bool, optional) – If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that
sparse=False, copy=False
will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first.
- Returns:
X1, X2,…, XN – For vectors x1, x2,…, xn with lengths
Ni=len(xi)
, returns(N1, N2, N3,..., Nn)
shaped arrays if indexing=’ij’ or(N2, N1, N3,..., Nn)
shaped arrays if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on.- Return type:
tuple of ndarrays
Notes
This function supports both indexing conventions through the indexing keyword argument. Giving the string ‘ij’ returns a meshgrid with matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for ‘xy’ indexing and (M, N, P) for ‘ij’ indexing. The difference is illustrated by the following code snippet:
xv, yv = np.meshgrid(x, y, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = np.meshgrid(x, y, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i]
In the 1-D and 0-D case, the indexing and sparse keywords have no effect.
- Availability:
Multiple GPUs, Multiple CPUs