nemo_microservices.data_designer.config.datastore#
Module Contents#
Classes#
Configuration for interacting with a datastore. |
Functions#
Extract column names based on file type. |
|
Data#
API#
- class nemo_microservices.data_designer.config.datastore.DatastoreSettings(/, **data: Any)#
Bases:
pydantic.BaseModelConfiguration for interacting with a datastore.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- endpoint: str#
‘Field(…)’
- token: str | None#
‘Field(…)’
- nemo_microservices.data_designer.config.datastore.fetch_seed_dataset_column_names(
- seed_dataset_reference: nemo_microservices.data_designer.config.seed.SeedDatasetReference,
- nemo_microservices.data_designer.config.datastore.get_file_column_names(
- file_path: str | pathlib.Path,
- file_type: str,
Extract column names based on file type.
- nemo_microservices.data_designer.config.datastore.logger#
‘getLogger(…)’
- nemo_microservices.data_designer.config.datastore.resolve_datastore_settings(
- datastore_settings: nemo_microservices.data_designer.config.datastore.DatastoreSettings | dict | None,
- nemo_microservices.data_designer.config.datastore.upload_to_hf_hub(
- dataset_path: str | pathlib.Path,
- filename: str,
- repo_id: str,
- datastore_settings: nemo_microservices.data_designer.config.datastore.DatastoreSettings,
- **kwargs,