nemo_microservices.data_designer.config.data_designer_config#
Module Contents#
Classes#
Configuration for NeMo Data Designer. |
API#
- class nemo_microservices.data_designer.config.data_designer_config.DataDesignerConfig(/, **data: typing.Any)#
Bases:
nemo_microservices.data_designer.config.base.ExportableConfigBaseConfiguration for NeMo Data Designer.
This class defines the main configuration structure for NeMo Data Designer, which orchestrates the generation of synthetic data.
Attributes: columns: Required list of column configurations defining how each column should be generated. Must contain at least one column. model_configs: Optional list of model configurations for LLM-based generation. Each model config defines the model, provider, and inference parameters. seed_config: Optional seed dataset settings to use for generation. constraints: Optional list of column constraints. profilers: Optional list of column profilers for analyzing generated data characteristics.
Initialization
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- columns: list[Annotated[nemo_microservices.data_designer.config.column_types.ColumnConfigT, Field(discriminator='column_type')]]#
‘Field(…)’
- constraints: Optional[list[nemo_microservices.data_designer.config.sampler_constraints.ColumnConstraintT]]#
None
- model_configs: Optional[list[nemo_microservices.data_designer.config.models.ModelConfig]]#
None
- processors: Optional[list[nemo_microservices.data_designer.config.processors.ProcessorConfig]]#
None
- profilers: Optional[list[nemo_microservices.data_designer.config.analysis.column_profilers.ColumnProfilerConfigT]]#
None
- seed_config: Optional[nemo_microservices.data_designer.config.seed.SeedConfig]#
None