nemo_microservices.resources.customization.configs
#
Module Contents#
Classes#
API#
- class nemo_microservices.resources.customization.configs.AsyncConfigsResource( )#
Bases:
nemo_microservices._resource.AsyncAPIResource
Initialization
- async create(
- *,
- max_seq_length: int,
- training_options: Iterable[nemo_microservices.types.customization_training_option_param.CustomizationTrainingOptionParam],
- chat_prompt_template: str | nemo_microservices._types.Omit = omit,
- custom_fields: Dict[str, object] | nemo_microservices._types.Omit = omit,
- dataset_schemas: Iterable[Dict[str, object]] | nemo_microservices._types.Omit = omit,
- description: str | nemo_microservices._types.Omit = omit,
- name: str | nemo_microservices._types.Omit = omit,
- namespace: str | nemo_microservices._types.Omit = omit,
- ownership: nemo_microservices.types.shared_params.ownership.Ownership | nemo_microservices._types.Omit = omit,
- pod_spec: nemo_microservices.types.training_pod_spec_param.TrainingPodSpecParam | nemo_microservices._types.Omit = omit,
- project: str | nemo_microservices._types.Omit = omit,
- prompt_template: str | nemo_microservices._types.Omit = omit,
- target: nemo_microservices.types.customization.config_create_params.Target | nemo_microservices._types.Omit = omit,
- training_precision: nemo_microservices.types.shared.model_precision.ModelPrecision | nemo_microservices._types.Omit = omit,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Create a new customization config.
Args: max_seq_length: The largest context used for training. Datasets are truncated based on the maximum sequence length.
training_options: Resource configuration for each training option for the model.
chat_prompt_template: Chat Prompt Template to apply to the model to make it compatible with chat datasets, or to train it on a different template for your use case.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embedding models.
custom_fields: A set of custom fields that the user can define and use for various purposes.
dataset_schemas: JSON Schema used for validating datasets that can be used with the configured finetuning jobs.
description: The description of the entity.
name: The name of the entity. Must be unique inside the namespace. If not specified, it will be the same as the automatically generated id.
namespace: The namespace of the entity. This can be missing for namespace entities or in deployments that don’t use namespaces.
ownership: Information about ownership of an entity.
If the entity is a namespace, the `access_policies` will typically apply to all entities inside the namespace.
pod_spec: Additional parameters to ensure these training jobs get run on the appropriate hardware.
project: The URN of the project associated with this entity.
prompt_template: Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embeddding models.
target: The target to perform the customization on
training_precision: Type of model precision.
## Values - `"int8"` - 8-bit integer precision - `"bf16"` - Brain floating point precision - `"fp16"` - 16-bit floating point precision - `"fp32"` - 32-bit floating point precision - `"fp8-mixed"` - Mixed 8-bit floating point precision available on Hopper and later architectures. - `"bf16-mixed"` - Mixed Brain floating point precision
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- async delete(
- config_name: str,
- *,
- namespace: str,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Delete Customization Config
Args: extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- list(
- *,
- filter: nemo_microservices.types.customization.customization_config_filter_param.CustomizationConfigFilterParam | nemo_microservices._types.Omit = omit,
- page: int | nemo_microservices._types.Omit = omit,
- page_size: int | nemo_microservices._types.Omit = omit,
- sort: nemo_microservices.types.customization.customization_config_sort_field.CustomizationConfigSortField | nemo_microservices._types.Omit = omit,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
List available customization configs.
Args: filter: Filter customization configs on various criteria.
page: Page number.
page_size: Page size.
sort: The field to sort by. To sort in decreasing order, use
-
in front of the field name.extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- async retrieve(
- config_name: str,
- *,
- namespace: str,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Get Customization Config
Args: extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- async update(
- config_name: str,
- *,
- namespace: str,
- add_training_options: Iterable[nemo_microservices.types.customization_training_option_param.CustomizationTrainingOptionParam] | nemo_microservices._types.Omit = omit,
- chat_prompt_template: str | nemo_microservices._types.Omit = omit,
- custom_fields: Dict[str, object] | nemo_microservices._types.Omit = omit,
- dataset_schemas: Iterable[Dict[str, object]] | nemo_microservices._types.Omit = omit,
- description: str | nemo_microservices._types.Omit = omit,
- max_seq_length: int | nemo_microservices._types.Omit = omit,
- ownership: nemo_microservices.types.shared_params.ownership.Ownership | nemo_microservices._types.Omit = omit,
- pod_spec: nemo_microservices.types.training_pod_spec_param.TrainingPodSpecParam | nemo_microservices._types.Omit = omit,
- project: str | nemo_microservices._types.Omit = omit,
- prompt_template: str | nemo_microservices._types.Omit = omit,
- remove_training_options: Iterable[nemo_microservices.types.customization.customization_training_option_removal_param.CustomizationTrainingOptionRemovalParam] | nemo_microservices._types.Omit = omit,
- training_options: Iterable[nemo_microservices.types.customization_training_option_param.CustomizationTrainingOptionParam] | nemo_microservices._types.Omit = omit,
- training_precision: nemo_microservices.types.shared.model_precision.ModelPrecision | nemo_microservices._types.Omit = omit,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Update a customization configuration with partial data.
This endpoint supports partial updates with the following behavior:
Override Behavior (Complete Replacement):
Top-level fields (e.g., description) - values are completely replaced
pod_spec
- each field in the pod_spec is replaced if provided. If a field is not provided, it is not removed.dataset_schemas
- entire dataset schemas are replaced if provided, no merging is done
Training Options Management: Training options are identified by the combination of
training_type
andfinetuning_type
. When updating training options:If
training_options
is provided, matching existing options are updated field-by-fieldIf
add_training_options
is provided, new options are appended to the listIf
remove_training_options
is provided, matching options are deletedAll other existing training options remain unchanged
Args: add_training_options: List of training options to add in the existing training options for the config.
chat_prompt_template: Chat Prompt Template to apply to the model to make it compatible with chat datasets, or to train it on a different template for your use case.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embedding models.
custom_fields: A set of custom fields that the user can define and use for various purposes.
dataset_schemas: JSON Schema used for validating datasets that can be used with the configured finetuning jobs.
description: The description of the entity.
max_seq_length: The largest context used for training. Datasets are truncated based on the maximum sequence length.
ownership: Information about ownership of an entity.
If the entity is a namespace, the `access_policies` will typically apply to all entities inside the namespace.
pod_spec: Additional parameters to ensure these training jobs get run on the appropriate hardware.
project: The URN of the project associated with this entity.
prompt_template: Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embeddding models.
remove_training_options: List of training options to remove from the existing training options for the config.
training_options: Resource configuration for each training option for the model.
training_precision: Type of model precision.
## Values - `"int8"` - 8-bit integer precision - `"bf16"` - Brain floating point precision - `"fp16"` - 16-bit floating point precision - `"fp32"` - 32-bit floating point precision - `"fp8-mixed"` - Mixed 8-bit floating point precision available on Hopper and later architectures. - `"bf16-mixed"` - Mixed Brain floating point precision
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- property with_raw_response: nemo_microservices.resources.customization.configs.AsyncConfigsResourceWithRawResponse#
This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content.
For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#accessing-raw-response-data-e-g-headers
- property with_streaming_response: nemo_microservices.resources.customization.configs.AsyncConfigsResourceWithStreamingResponse#
An alternative to
.with_raw_response
that doesn’t eagerly read the response body.For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#with_streaming_response
- class nemo_microservices.resources.customization.configs.AsyncConfigsResourceWithRawResponse( )#
Initialization
- class nemo_microservices.resources.customization.configs.AsyncConfigsResourceWithStreamingResponse( )#
Initialization
- class nemo_microservices.resources.customization.configs.ConfigsResource(client: nemo_microservices._client.NeMoMicroservices)#
Bases:
nemo_microservices._resource.SyncAPIResource
Initialization
- create(
- *,
- max_seq_length: int,
- training_options: Iterable[nemo_microservices.types.customization_training_option_param.CustomizationTrainingOptionParam],
- chat_prompt_template: str | nemo_microservices._types.Omit = omit,
- custom_fields: Dict[str, object] | nemo_microservices._types.Omit = omit,
- dataset_schemas: Iterable[Dict[str, object]] | nemo_microservices._types.Omit = omit,
- description: str | nemo_microservices._types.Omit = omit,
- name: str | nemo_microservices._types.Omit = omit,
- namespace: str | nemo_microservices._types.Omit = omit,
- ownership: nemo_microservices.types.shared_params.ownership.Ownership | nemo_microservices._types.Omit = omit,
- pod_spec: nemo_microservices.types.training_pod_spec_param.TrainingPodSpecParam | nemo_microservices._types.Omit = omit,
- project: str | nemo_microservices._types.Omit = omit,
- prompt_template: str | nemo_microservices._types.Omit = omit,
- target: nemo_microservices.types.customization.config_create_params.Target | nemo_microservices._types.Omit = omit,
- training_precision: nemo_microservices.types.shared.model_precision.ModelPrecision | nemo_microservices._types.Omit = omit,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Create a new customization config.
Args: max_seq_length: The largest context used for training. Datasets are truncated based on the maximum sequence length.
training_options: Resource configuration for each training option for the model.
chat_prompt_template: Chat Prompt Template to apply to the model to make it compatible with chat datasets, or to train it on a different template for your use case.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embedding models.
custom_fields: A set of custom fields that the user can define and use for various purposes.
dataset_schemas: JSON Schema used for validating datasets that can be used with the configured finetuning jobs.
description: The description of the entity.
name: The name of the entity. Must be unique inside the namespace. If not specified, it will be the same as the automatically generated id.
namespace: The namespace of the entity. This can be missing for namespace entities or in deployments that don’t use namespaces.
ownership: Information about ownership of an entity.
If the entity is a namespace, the `access_policies` will typically apply to all entities inside the namespace.
pod_spec: Additional parameters to ensure these training jobs get run on the appropriate hardware.
project: The URN of the project associated with this entity.
prompt_template: Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embeddding models.
target: The target to perform the customization on
training_precision: Type of model precision.
## Values - `"int8"` - 8-bit integer precision - `"bf16"` - Brain floating point precision - `"fp16"` - 16-bit floating point precision - `"fp32"` - 32-bit floating point precision - `"fp8-mixed"` - Mixed 8-bit floating point precision available on Hopper and later architectures. - `"bf16-mixed"` - Mixed Brain floating point precision
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- delete(
- config_name: str,
- *,
- namespace: str,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Delete Customization Config
Args: extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- list(
- *,
- filter: nemo_microservices.types.customization.customization_config_filter_param.CustomizationConfigFilterParam | nemo_microservices._types.Omit = omit,
- page: int | nemo_microservices._types.Omit = omit,
- page_size: int | nemo_microservices._types.Omit = omit,
- sort: nemo_microservices.types.customization.customization_config_sort_field.CustomizationConfigSortField | nemo_microservices._types.Omit = omit,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
List available customization configs.
Args: filter: Filter customization configs on various criteria.
page: Page number.
page_size: Page size.
sort: The field to sort by. To sort in decreasing order, use
-
in front of the field name.extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- retrieve(
- config_name: str,
- *,
- namespace: str,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Get Customization Config
Args: extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- update(
- config_name: str,
- *,
- namespace: str,
- add_training_options: Iterable[nemo_microservices.types.customization_training_option_param.CustomizationTrainingOptionParam] | nemo_microservices._types.Omit = omit,
- chat_prompt_template: str | nemo_microservices._types.Omit = omit,
- custom_fields: Dict[str, object] | nemo_microservices._types.Omit = omit,
- dataset_schemas: Iterable[Dict[str, object]] | nemo_microservices._types.Omit = omit,
- description: str | nemo_microservices._types.Omit = omit,
- max_seq_length: int | nemo_microservices._types.Omit = omit,
- ownership: nemo_microservices.types.shared_params.ownership.Ownership | nemo_microservices._types.Omit = omit,
- pod_spec: nemo_microservices.types.training_pod_spec_param.TrainingPodSpecParam | nemo_microservices._types.Omit = omit,
- project: str | nemo_microservices._types.Omit = omit,
- prompt_template: str | nemo_microservices._types.Omit = omit,
- remove_training_options: Iterable[nemo_microservices.types.customization.customization_training_option_removal_param.CustomizationTrainingOptionRemovalParam] | nemo_microservices._types.Omit = omit,
- training_options: Iterable[nemo_microservices.types.customization_training_option_param.CustomizationTrainingOptionParam] | nemo_microservices._types.Omit = omit,
- training_precision: nemo_microservices.types.shared.model_precision.ModelPrecision | nemo_microservices._types.Omit = omit,
- extra_headers: nemo_microservices._types.Headers | None = None,
- extra_query: nemo_microservices._types.Query | None = None,
- extra_body: nemo_microservices._types.Body | None = None,
- timeout: float | httpx.Timeout | None | nemo_microservices._types.NotGiven = not_given,
Update a customization configuration with partial data.
This endpoint supports partial updates with the following behavior:
Override Behavior (Complete Replacement):
Top-level fields (e.g., description) - values are completely replaced
pod_spec
- each field in the pod_spec is replaced if provided. If a field is not provided, it is not removed.dataset_schemas
- entire dataset schemas are replaced if provided, no merging is done
Training Options Management: Training options are identified by the combination of
training_type
andfinetuning_type
. When updating training options:If
training_options
is provided, matching existing options are updated field-by-fieldIf
add_training_options
is provided, new options are appended to the listIf
remove_training_options
is provided, matching options are deletedAll other existing training options remain unchanged
Args: add_training_options: List of training options to add in the existing training options for the config.
chat_prompt_template: Chat Prompt Template to apply to the model to make it compatible with chat datasets, or to train it on a different template for your use case.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embedding models.
custom_fields: A set of custom fields that the user can define and use for various purposes.
dataset_schemas: JSON Schema used for validating datasets that can be used with the configured finetuning jobs.
description: The description of the entity.
max_seq_length: The largest context used for training. Datasets are truncated based on the maximum sequence length.
ownership: Information about ownership of an entity.
If the entity is a namespace, the `access_policies` will typically apply to all entities inside the namespace.
pod_spec: Additional parameters to ensure these training jobs get run on the appropriate hardware.
project: The URN of the project associated with this entity.
prompt_template: Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’.
This parameter is only used for the "SFT" and "Distillation" Training Types on non embeddding models.
remove_training_options: List of training options to remove from the existing training options for the config.
training_options: Resource configuration for each training option for the model.
training_precision: Type of model precision.
## Values - `"int8"` - 8-bit integer precision - `"bf16"` - Brain floating point precision - `"fp16"` - 16-bit floating point precision - `"fp32"` - 32-bit floating point precision - `"fp8-mixed"` - Mixed 8-bit floating point precision available on Hopper and later architectures. - `"bf16-mixed"` - Mixed Brain floating point precision
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
- property with_raw_response: nemo_microservices.resources.customization.configs.ConfigsResourceWithRawResponse#
This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content.
For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#accessing-raw-response-data-e-g-headers
- property with_streaming_response: nemo_microservices.resources.customization.configs.ConfigsResourceWithStreamingResponse#
An alternative to
.with_raw_response
that doesn’t eagerly read the response body.For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#with_streaming_response
- class nemo_microservices.resources.customization.configs.ConfigsResourceWithRawResponse( )#
Initialization
- class nemo_microservices.resources.customization.configs.ConfigsResourceWithStreamingResponse( )#
Initialization