ResNet Training in PaddlePaddle#
This is a demo showcasing ResNet50 training on ImageNet. The code is based on NVIDIA Deep Learning Examples
Data augmentation#
This model uses the following data augmentation:
- For training: - Normalization 
- Random resized crop to 224x224 - Scale from 8% to 100% 
- Aspect ratio from 3/4 to 4/3 
 
- Random horizontal flip 
 
- For inference: - Normalization 
- Scale to 256x256 
- Center crop to 224x224 
 
Usage#
Install the necessary packages from requirements.txt before use.
The startup script is docs/examples/use_cases/paddle/resnet50/train.py.
 # For single GPU training with AMP
FLAGS_apply_pass_to_program=1 python -m paddle.distributed.launch \
  --gpus=0 train.py \
  --epochs 90 \
  --amp \
  --scale-loss 128.0 \
  --use-dynamic-loss-scaling \
  --data-layout NHWC
# For 8 GPUs training with AMP
FLAGS_apply_pass_to_program=1 python -m paddle.distributed.launch \
  --gpus=0,1,2,3,4,5,6,7 train.py \
  --epochs 90 \
  --amp \
  --scale-loss 128.0 \
  --use-dynamic-loss-scaling \
  --data-layout NHWC
# For all available options
python train.py --help