NVIDIA Modulus Sym v1.2.0
Sym v1.2.0

deeplearning/modulus/modulus-sym-v120/_modules/modulus/sym/domain/inferencer/vtkpointwise.html

Source code for modulus.sym.domain.inferencer.vtkpointwise

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Union, Callable
from pathlib import Path
import inspect

import torch
import numpy as np

from modulus.sym.domain.inferencer import PointwiseInferencer
from modulus.sym.domain.constraint import Constraint
from modulus.sym.graph import Graph
from modulus.sym.key import Key
from modulus.sym.node import Node
from modulus.sym.distributed import DistributedManager
from modulus.sym.utils.io import InferencerPlotter
from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase, VTKUniformGrid
from modulus.sym.dataset import DictInferencePointwiseDataset


[docs]class PointVTKInferencer(PointwiseInferencer): """ Pointwise inferencer using mesh points of VTK object Parameters ---------- vtk_obj : VTKBase Modulus VTK object to use point locations from nodes : List[Node] List of Modulus Nodes to unroll graph with. input_vtk_map : Dict[str, List[str]] Dictionary mapping from Modulus input variables to VTK variable names {"modulus.sym.name": ["vtk name"]}. Use colons to denote components of multi-dimensional VTK arrays ("name":# ) output_names : List[str] List of desired outputs. invar : Dict[str, np.array], optional Dictionary of additional numpy arrays as input, by default {} batch_size : int Batch size used when running inference mask_fn : Union[Callable, None], optional Masking function to remove points from inferencing, by default None mask_value : float, optional Value to assign masked points, by default Nan plotter : Plotter, optional Modulus `Plotter` for showing results in tensorboard., by default None requires_grad : bool, optional If automatic differentiation is needed for computing results., by default True log_iter : bool, optional Save results to different file each call, by default False """ def __init__( self, vtk_obj: VTKBase, nodes: List[Node], input_vtk_map: Dict[str, List[str]], output_names: List[str], invar: Dict[str, np.array] = {}, # Additional inputs batch_size: int = 1024, mask_fn: Union[Callable, None] = None, mask_value: float = np.nan, plotter=None, requires_grad: bool = False, log_iter: bool = False, model=None, ): # Set VTK file save dir and file name self.vtk_obj = vtk_obj self.vtk_obj.file_dir = "./inferencers" self.vtk_obj.file_name = "inferencer" # Set up input dict invar_vtk = self.vtk_obj.get_data_from_map(input_vtk_map) invar.update(invar_vtk) # If mask set up mask indexes self.mask_value = mask_value self.mask_index = None if mask_fn is not None: args, _, _, _ = inspect.getargspec(mask_fn) # Fall back np_lambdify does not supply arguement names # Ideally np_lambdify should allow input names to be queried if len(args) == 0: args = list(invar.keys()) # Hope your inputs all go into the mask mask_input = {key: invar[key] for key in args if key in invar} mask = np.squeeze(mask_fn(**mask_input).astype(np.bool_)) # True points get masked while False get kept, flip for index self.mask_index = np.logical_not(mask) # Mask out to only masked points (only inference here) for key, value in invar.items(): invar[key] = value[self.mask_index] # set plotter self.plotter = plotter self.log_iter = log_iter # initialize inferencer super().__init__( nodes=nodes, invar=invar, output_names=output_names, batch_size=batch_size, plotter=plotter, requires_grad=requires_grad, model=model, ) def save_results(self, name, results_dir, writer, save_filetypes, step): # Compute results invar, predvar = self._compute_results() # Reconstruct full array if mask was applied if self.mask_index is not None: invar, predvar = self._mask_results(invar, predvar) # Write results to file self._write_results( invar, predvar, name, results_dir, writer, save_filetypes, step ) def save_stream( self, name, results_dir, writer, step, save_results, save_filetypes, to_cpu ): if not to_cpu: raise NotImplementedError("to_cpu=False not supported.") # Compute results invar, predvar = self._compute_results() # Reconstruct full array if mask was applied if self.mask_index is not None: invar, predvar = self._mask_results(invar, predvar) # Write results to file if save_results: self._write_results( invar, predvar, name, results_dir, writer, save_filetypes, step ) return {**invar, **predvar} def _compute_results(self): invar_cpu = {key: [] for key in self.dataset.invar_keys} predvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0,) in enumerate(self.dataloader): # Move data to device invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) invar_cpu = {key: value + [invar0[key]] for key, value in invar_cpu.items()} predvar_cpu = { key: value + [pred_outvar[key].cpu().detach().numpy()] for key, value in predvar_cpu.items() } # Concat mini-batch arrays invar = {key: np.concatenate(value) for key, value in invar_cpu.items()} predvar = {key: np.concatenate(value) for key, value in predvar_cpu.items()} return invar, predvar def _mask_results(self, invar, predvar): # Reconstruct full array if mask was applied for key, value in invar.items(): full_array = np.full( (self.mask_index.shape[0], value.shape[1]), self.mask_value, dtype=value.dtype, ) full_array[self.mask_index] = value invar[key] = full_array for key, value in predvar.items(): full_array = np.full( (self.mask_index.shape[0], value.shape[1]), self.mask_value, dtype=value.dtype, ) full_array[self.mask_index] = value predvar[key] = full_array return invar, predvar def _write_results( self, invar, predvar, name, results_dir, writer, save_filetypes, step ): # Save batch to vtk/np files if "np" in save_filetypes: np.savez(results_dir + name, {**invar, **predvar}) if "vtk" in save_filetypes: self.vtk_obj.file_dir = Path(results_dir) self.vtk_obj.file_name = Path(name).stem if self.log_iter: self.vtk_obj.var_to_vtk(data_vars={**invar, **predvar}, step=step) else: self.vtk_obj.var_to_vtk(data_vars={**invar, **predvar}) # Add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Inferencers", name, results_dir, writer, step, invar, predvar )
© Copyright 2023, NVIDIA Modulus Team. Last updated on Jan 25, 2024.