deeplearning/modulus/modulus-sym-v120/_modules/modulus/sym/hydra/loss.html

Source code for modulus.sym.hydra.loss

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Supported Modulus loss aggregator configs
"""

import torch

from dataclasses import dataclass
from hydra.core.config_store import ConfigStore
from omegaconf import MISSING
from typing import Any


[docs]@dataclass class LossConf: _target_: str = MISSING weights: Any = None
[docs]@dataclass class AggregatorSumConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.Sum"
[docs]@dataclass class AggregatorGradNormConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.GradNorm" alpha: float = 1.0
[docs]@dataclass class AggregatorResNormConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.ResNorm" alpha: float = 1.0
[docs]@dataclass class AggregatorHomoscedasticConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.HomoscedasticUncertainty"
[docs]@dataclass class AggregatorLRAnnealingConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.LRAnnealing" update_freq: int = 1 alpha: float = 0.01 ref_key: Any = None # Change to Union[None, str] when supported by hydra eps: float = 1e-8
[docs]@dataclass class AggregatorSoftAdaptConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.SoftAdapt" eps: float = 1e-8
[docs]@dataclass class AggregatorRelobraloConf(LossConf): _target_: str = "modulus.sym.loss.aggregator.Relobralo" alpha: float = 0.95 beta: float = 0.99 tau: float = 1.0 eps: float = 1e-8
[docs]@dataclass class NTKConf: use_ntk: bool = False save_name: Any = None # Union[str, None] run_freq: int = 1000
[docs]def register_loss_configs() -> None: cs = ConfigStore.instance() cs.store( group="loss", name="sum", node=AggregatorSumConf, ) cs.store( group="loss", name="grad_norm", node=AggregatorGradNormConf, ) cs.store( group="loss", name="res_norm", node=AggregatorResNormConf, ) cs.store( group="loss", name="homoscedastic", node=AggregatorHomoscedasticConf, ) cs.store( group="loss", name="lr_annealing", node=AggregatorLRAnnealingConf, ) cs.store( group="loss", name="soft_adapt", node=AggregatorSoftAdaptConf, ) cs.store( group="loss", name="relobralo", node=AggregatorRelobraloConf, )
© Copyright 2023, NVIDIA Modulus Team. Last updated on Jan 25, 2024.