deeplearning/modulus/modulus-sym-v120/_modules/modulus/sym/models/modified_fourier_net.html

Sym v1.2.0

Source code for modulus.sym.models.modified_fourier_net

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the “License”); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an “AS IS” BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key 
[docs]class ModifiedFourierNetArch(Arch): """ A modified Fourier Network which enables multiplicative interactions betweeen the Fourier features and hidden layers. References: (1) Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T. and Ng, R., 2020. Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739. (2) Wang, S., Teng, Y. and Perdikaris, P., 2020. Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:2001.04536. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] frequencies : Tuple[str, List[float]] = (“axis”, [i for i in range(10)]) A tuple that describes the Fourier encodings to use any inputs in the list `[‘x’, ‘y’, ‘z’, ‘t’]`. The first element describes the type of frequency encoding with options, `'gaussian’, ‘full’, ‘axis’, ‘diagonal'`. `'gaussian'` samples frequency of Fourier series from Gaussian. `'axis'` samples along axis of spectral space with the given list range of frequencies. `'diagonal'` samples along diagonal of spectral space with the given list range of frequencies. `'full'` samples along entire spectral space for all combinations of frequencies in given list. frequencies_params : Tuple[str, List[float]] = (“axis”, [i for i in range(10)]) Same as `frequencies` except these are used for encodings on any inputs not in the list `[‘x’, ‘y’, ‘z’, ‘t’]`. activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. layer_size : int = 512 Layer size for every hidden layer of the model. nr_layers : int = 6 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. weight_norm : bool = True Use weight norm on fully connected layers. adaptive_activations : bool = False If True then use an adaptive activation function as described here https://arxiv.org/abs/1906.01170. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], frequencies=(“axis”, [i for i in range(10)]), frequencies_params=(“axis”, [i for i in range(10)]), activation_fn=layers.Activation.SILU, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) self.skip_connections = skip_connections if adaptive_activations: activation_par = nn.Parameter(torch.ones(1)) else: activation_par = None self.xyzt_var = [x for x in self.input_key_dict if x in [“x”, “y”, “z”, “t”]] # Prepare slice index xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var) self.register_buffer(“xyzt_slice_index”, xyzt_slice_index, persistent=False) self.params_var = [ x for x in self.input_key_dict if x not in [“x”, “y”, “z”, “t”] ] params_slice_index = self.prepare_slice_index( self.input_key_dict, self.params_var ) self.register_buffer(“params_slice_index”, params_slice_index, persistent=False) in_features_xyzt = sum( (v for k, v in self.input_key_dict.items() if k in self.xyzt_var) ) in_features_params = sum( (v for k, v in self.input_key_dict.items() if k in self.params_var) ) in_features = in_features_xyzt + in_features_params out_features = sum(self.output_key_dict.values()) in_features = in_features_xyzt + in_features_params if in_features_xyzt > 0: self.fourier_layer_xyzt = layers.FourierLayer( in_features=in_features_xyzt, frequencies=frequencies ) in_features += self.fourier_layer_xyzt.out_features() else: self.fourier_layer_xyzt = None if in_features_params > 0: self.fourier_layer_params = layers.FourierLayer( in_features=in_features_params, frequencies=frequencies_params ) in_features += self.fourier_layer_params.out_features() else: self.fourier_layer_params = None self.fc_u = layers.FCLayer( in_features=in_features, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, activation_par=activation_par, ) self.fc_v = layers.FCLayer( in_features=in_features, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, activation_par=activation_par, ) self.fc_0 = layers.FCLayer( in_features, layer_size, activation_fn, weight_norm, activation_par=activation_par, ) self.fc_layers = nn.ModuleList() for i in range(nr_layers - 1): self.fc_layers.append( layers.FCLayer( layer_size, layer_size, activation_fn, weight_norm, activation_par=activation_par, ) ) self.final_layer = layers.FCLayer( in_features=layer_size, out_features=out_features, activation_fn=layers.Activation.IDENTITY, weight_norm=False, activation_par=None, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) if self.fourier_layer_xyzt is not None: in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.slice_input(x, self.params_slice_index, dim=-1) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) xu = self.fc_u(x) xv = self.fc_v(x) x = self.fc_0(x) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers, 1): x = layer(x) x = xu - x * xu + x * xv if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) x = self.process_output(x, self.output_scales_tensor) return x
[docs] def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1)

def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) if self.fourier_layer_xyzt is not None: in_xyzt_var = self.prepare_input( in_vars, self.xyzt_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.prepare_input( in_vars, self.params_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) xu = self.fc_u(x) xv = self.fc_v(x) x = self.fc_0(x) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers, 1): x = layer(x) x = xu - x * xu + x * xv if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )

© Copyright 2023, NVIDIA Modulus Team. Last updated on Jan 25, 2024.