deeplearning/modulus/modulus-sym-v120/_modules/modulus/sym/models/multiscale_fourier_net.html
Source code for modulus.sym.models.multiscale_fourier_net
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import torch
import torch.nn as nn
from torch import Tensor
import modulus.sym.models.layers as layers
from modulus.sym.models.arch import Arch
from modulus.sym.key import Key
[docs]class MultiscaleFourierNetArch(Arch):
"""
Multi-scale Fourier Net
References:
1. Sifan Wang, Hanwen Wang, Paris Perdikaris, On the eigenvector bias of Fourier feature
networks: From regression to solving multi-scale PDEs with physics-informed neural networks,
Computer Methods in Applied Mechanics and Engineering, Volume 384,2021.
Parameters
----------
input_keys : List[Key]
Input key list
output_keys : List[Key]
Output key list
detach_keys : List[Key], optional
List of keys to detach gradients, by default []
frequencies : Tuple[Tuple[str, List[float]],...] = (("axis", [i for i in range(10)]),)
A set of Fourier encoding tuples to use any inputs in
the list `['x', 'y', 'z', 't']`.
The first element describes the type of frequency encoding
with options, `'gaussian', 'full', 'axis', 'diagonal'`.
`'gaussian'` samples frequency of Fourier series from Gaussian.
`'axis'` samples along axis of spectral space with the given list range of frequencies.
`'diagonal'` samples along diagonal of spectral space with the given list range of frequencies.
`'full'` samples along entire spectral space for all combinations of frequencies in given list.
frequencies_params : Tuple[Tuple[str, List[float]],...] = (("axis", [i for i in range(10)]),)
Same as `frequencies` except these are used for encodings
on any inputs not in the list `['x', 'y', 'z', 't']`.
activation_fn : layers.Activation = layers.Activation.SILU
Activation function used by network.
layer_size : int = 512
Layer size for every hidden layer of the model.
nr_layers : int = 6
Number of hidden layers of the model.
skip_connections : bool = False
If true then apply skip connections every 2 hidden layers.
weight_norm : bool = True
Use weight norm on fully connected layers.
adaptive_activations : bool = False
If True then use an adaptive activation function as described here
https://arxiv.org/abs/1906.01170.
"""
def __init__(
self,
input_keys: List[Key],
output_keys: List[Key],
detach_keys: List[Key] = [],
frequencies=(("axis", [i for i in range(10)]),),
frequencies_params=(("axis", [i for i in range(10)]),),
activation_fn=layers.Activation.SILU,
layer_size: int = 512,
nr_layers: int = 6,
skip_connections: bool = False,
weight_norm: bool = True,
adaptive_activations: bool = False,
) -> None:
super().__init__(
input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys
)
self.skip_connections = skip_connections
self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]]
# Prepare slice index
xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var)
self.register_buffer("xyzt_slice_index", xyzt_slice_index, persistent=False)
self.params_var = [
x for x in self.input_key_dict if x not in ["x", "y", "z", "t"]
]
params_slice_index = self.prepare_slice_index(
self.input_key_dict, self.params_var
)
self.register_buffer("params_slice_index", params_slice_index, persistent=False)
in_features_xyzt = sum(
(v for k, v in self.input_key_dict.items() if k in self.xyzt_var)
)
in_features_params = sum(
(v for k, v in self.input_key_dict.items() if k in self.params_var)
)
in_features = in_features_xyzt + in_features_params
out_features = sum(self.output_key_dict.values())
if adaptive_activations:
activation_par = nn.Parameter(torch.ones(1))
else:
activation_par = None
in_features = in_features_xyzt + in_features_params
if frequencies_params is None:
frequencies_params = frequencies
self.num_freqs = len(frequencies)
if in_features_xyzt > 0:
self.fourier_layers_xyzt = nn.ModuleList()
for idx in range(self.num_freqs):
self.fourier_layers_xyzt.append(
layers.FourierLayer(
in_features=in_features_xyzt,
frequencies=frequencies[idx],
)
)
in_features += self.fourier_layers_xyzt[0].out_features()
else:
self.fourier_layers_xyzt = None
if in_features_params > 0:
self.fourier_layers_params = nn.ModuleList()
for idx in range(self.num_freqs):
self.fourier_layers_params.append(
layers.FourierLayer(
in_features=in_features_params,
frequencies=frequencies_params[idx],
)
)
in_features += self.fourier_layers_params[0].out_features()
else:
self.fourier_layers_params = None
self.fc_layers = nn.ModuleList()
layer_in_features = in_features
for i in range(nr_layers):
self.fc_layers.append(
layers.FCLayer(
layer_in_features,
layer_size,
activation_fn,
weight_norm,
activation_par,
)
)
layer_in_features = layer_size
self.final_layer = layers.FCLayer(
in_features=layer_size * self.num_freqs,
out_features=out_features,
activation_fn=layers.Activation.IDENTITY,
weight_norm=False,
activation_par=None,
)
def _tensor_forward(self, x: Tensor) -> Tensor:
x = self.process_input(
x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1
)
if self.fourier_layers_xyzt is not None:
in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1)
if self.fourier_layers_params is not None:
in_params_var = self.slice_input(x, self.params_slice_index, dim=-1)
old_x = x
fc_outputs = []
_len = (
len(self.fourier_layers_xyzt)
if self.fourier_layers_xyzt is not None
else len(self.fourier_layers_params)
)
zip_fourier_layers_xyzt = (
self.fourier_layers_xyzt
if self.fourier_layers_xyzt is not None
else [None] * _len
)
zip_fourier_layers_params = (
self.fourier_layers_params
if self.fourier_layers_params is not None
else [None] * _len
)
for fourier_layer_xyzt, fourier_layer_params in zip(
zip_fourier_layers_xyzt, zip_fourier_layers_params
):
x = old_x
if self.fourier_layers_xyzt is not None:
fourier_xyzt = fourier_layer_xyzt(in_xyzt_var)
x = torch.cat((x, fourier_xyzt), dim=-1)
if self.fourier_layers_params is not None:
fourier_params = fourier_layer_params(in_params_var)
x = torch.cat((x, fourier_params), dim=-1)
x_skip: Optional[Tensor] = None
for i, layer in enumerate(self.fc_layers):
x = layer(x)
if self.skip_connections and i % 2 == 0:
if x_skip is not None:
x, x_skip = x + x_skip, x
else:
x_skip = x
fc_outputs.append(x)
x = torch.cat(fc_outputs, dim=-1)
x = self.final_layer(x)
x = self.process_output(x, self.output_scales_tensor)
return x
[docs] def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]:
x = self.concat_input(
in_vars,
self.input_key_dict.keys(),
detach_dict=self.detach_key_dict,
dim=-1,
)
y = self._tensor_forward(x)
return self.split_output(y, self.output_key_dict, dim=-1)def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]:
"""
This is the original forward function, left here for the correctness test.
"""
x = self.prepare_input(
in_vars,
self.input_key_dict.keys(),
detach_dict=self.detach_key_dict,
dim=-1,
input_scales=self.input_scales,
)
if self.fourier_layers_xyzt is not None:
in_xyzt_var = self.prepare_input(
in_vars,
self.xyzt_var,
detach_dict=self.detach_key_dict,
dim=-1,
input_scales=self.input_scales,
)
if self.fourier_layers_params is not None:
in_params_var = self.prepare_input(
in_vars,
self.params_var,
detach_dict=self.detach_key_dict,
dim=-1,
input_scales=self.input_scales,
)
old_x = x
fc_outputs = []
_len = (
len(self.fourier_layers_xyzt)
if self.fourier_layers_xyzt is not None
else len(self.fourier_layers_params)
)
zip_fourier_layers_xyzt = (
self.fourier_layers_xyzt
if self.fourier_layers_xyzt is not None
else [None] * _len
)
zip_fourier_layers_params = (
self.fourier_layers_params
if self.fourier_layers_params is not None
else [None] * _len
)
for fourier_layer_xyzt, fourier_layer_params in zip(
zip_fourier_layers_xyzt, zip_fourier_layers_params
):
x = old_x
if self.fourier_layers_xyzt is not None:
fourier_xyzt = fourier_layer_xyzt(in_xyzt_var)
x = torch.cat((x, fourier_xyzt), dim=-1)
if self.fourier_layers_params is not None:
fourier_params = fourier_layer_params(in_params_var)
x = torch.cat((x, fourier_params), dim=-1)
x_skip: Optional[Tensor] = None
for i, layer in enumerate(self.fc_layers):
x = layer(x)
if self.skip_connections and i % 2 == 0:
if x_skip is not None:
x, x_skip = x + x_skip, x
else:
x_skip = x
fc_outputs.append(x)
x = torch.cat(fc_outputs, dim=-1)
x = self.final_layer(x)
return self.prepare_output(
x, self.output_key_dict, dim=-1, output_scales=self.output_scales
)