deeplearning/modulus/modulus-sym-v100/_modules/modulus/sym/geometry/discrete_geometry.html
Source code for modulus.sym.geometry.discrete_geometry
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Defines a Discrete geometry
"""
import numpy as np
import csv
from stl import mesh as np_mesh
from sympy import Symbol
from .geometry import Geometry
from .parameterization import Parameterization, Bounds, Parameter
from modulus.sym.constants import diff_str
[docs]class DiscreteGeometry(Geometry):
"""
Constructs a geometry for a discrete list of geometries
"""
def __init__(
self, geometries, parameterization=Parameterization(), interior_epsilon=1e-6
):
# make sdf function
def _sdf(list_sdf, discrete_parameterization, dims):
def sdf(invar, params, compute_sdf_derivatives=False):
# make output array to gather sdf values
outputs = {"sdf": np.full_like(next(iter(invar.values())), np.nan)}
if compute_sdf_derivatives:
for d in dims:
outputs["sdf" + diff_str + d] = np.full_like(
next(iter(invar.values())), -1000
)
# compute sdf values for given parameterizations
for i, f in enumerate(list_sdf):
# get sdf index for each point evaluating on
sdf_index = np.full_like(
next(iter(invar.values())), True
) # TODO this could be simplified
for key in discrete_parameterization.parameters:
expanded_d = np.tile(
discrete_parameterization.param_ranges[Parameter(key)][
i : i + 1
],
(params[key].shape[0], 1),
)
sdf_index = np.logical_and(
sdf_index, (params[key] == expanded_d)
)
# compute sdf values on indexed sdf function
sdf_indexed_invar = {
key: value[sdf_index[:, 0], :] for key, value in invar.items()
}
sdf_indexed_params = {
key: value[sdf_index[:, 0], :] for key, value in params.items()
}
computed_sdf = f(
sdf_indexed_invar, sdf_indexed_params, compute_sdf_derivatives
)
# update output values
for key, value in computed_sdf.items():
outputs[key][sdf_index[:, 0], :] = value
return outputs
return sdf
new_sdf = _sdf(
[g.sdf for g in geometries], parameterization, geometries[0].dims
)
# compute bounds
bounds = geometries[0].bounds
for g in geometries[1:]:
bounds = bounds.union(g.bounds)
# make curves
new_curves = []
for g in geometries:
new_curves += g.curves
# initialize geometry
super().__init__(
new_curves,
new_sdf,
dims=len(geometries[0].dims),
bounds=bounds,
parameterization=parameterization,
)class DiscreteCurve:
def __init__(self, curves, discrete_parameterization=Parameterization()):
# store attributes
self.curves = curves
self._dims = len(curves[0].dims)
self.discrete_parameterization = discrete_parameterization
def sample(
self, nr_points, criteria=None, parameterization=None, quasirandom=False
):
# use internal parameterization if not given
if parameterization is None:
parameterization = self.parameterization
# continually sample points throwing out points that don't satisfy criteria
invar = {
key: np.empty((0, 1))
for key in self.dims + ["normal_" + x for x in self.dims] + ["area"]
}
params = {key: np.empty((0, 1)) for key in parameterization.parameters}
total_sampled = 0
total_tried = 0
nr_try = 0
while True:
# sample curve
local_invar, local_params = self._sample(
nr_points, parameterization, quasirandom
)
# compute given criteria and remove points
if criteria is not None:
computed_criteria = criteria(local_invar, local_params)
local_invar = {
key: value[computed_criteria[:, 0], :]
for key, value in local_invar.items()
}
local_params = {
key: value[computed_criteria[:, 0], :]
for key, value in local_params.items()
}
# store invar
for key in local_invar.keys():
invar[key] = np.concatenate([invar[key], local_invar[key]], axis=0)
# store params
for key in local_params.keys():
params[key] = np.concatenate([params[key], local_params[key]], axis=0)
# keep track of sampling
total_sampled = next(iter(invar.values())).shape[0]
total_tried += nr_points
nr_try += 1
# break when finished sampling
if total_sampled >= nr_points:
for key, value in invar.items():
invar[key] = value[:nr_points]
for key, value in params.items():
params[key] = value[:nr_points]
break
# check if couldn't sample
if nr_try > 1000 and total_sampled < 1:
raise Exception("Unable to sample curve")
return invar, params