Modulus Sym Hydra
Architecture/Model configs
- class modulus.sym.hydra.arch.AFNOConf(arch_type: str = 'afno', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, img_shape: Tuple[int] = '???', patch_size: int = 16, embed_dim: int = 256, depth: int = 4, num_blocks: int = 8)[source]
Bases:
ModelConf
- arch_type: str = 'afno'
- depth: int = 4
- embed_dim: int = 256
- img_shape: Tuple[int] = '???'
- num_blocks: int = 8
- patch_size: int = 16
- class modulus.sym.hydra.arch.ConvFullyConnectedConf(arch_type: str = 'conv_fully_connected', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, activation_fn: str = 'silu', adaptive_activations: bool = False, weight_norm: bool = True)[source]
Bases:
ModelConf
- activation_fn: str = 'silu'
- adaptive_activations: bool = False
- arch_type: str = 'conv_fully_connected'
- layer_size: int = 512
- nr_layers: int = 6
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.DeepOConf(arch_type: str = 'deeponet', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, trunk_dim: Any = None, branch_dim: Any = None)[source]
Bases:
ModelConf
- arch_type: str = 'deeponet'
- branch_dim: Any = None
- trunk_dim: Any = None
- class modulus.sym.hydra.arch.DistributedAFNOConf(arch_type: str = 'distributed_afno', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, img_shape: Tuple[int] = '???', patch_size: int = 16, embed_dim: int = 256, depth: int = 4, num_blocks: int = 8, channel_parallel_inputs: bool = False, channel_parallel_outputs: bool = False)[source]
Bases:
ModelConf
- arch_type: str = 'distributed_afno'
- channel_parallel_inputs: bool = False
- channel_parallel_outputs: bool = False
- depth: int = 4
- embed_dim: int = 256
- img_shape: Tuple[int] = '???'
- num_blocks: int = 8
- patch_size: int = 16
- class modulus.sym.hydra.arch.FNOConf(arch_type: str = 'fno', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, dimension: int = '???', nr_fno_layers: int = 4, fno_modes: Any = 16, padding: int = 8, padding_type: str = 'constant', activation_fn: str = 'gelu', coord_features: bool = True)[source]
Bases:
ModelConf
- activation_fn: str = 'gelu'
- arch_type: str = 'fno'
- coord_features: bool = True
- dimension: int = '???'
- fno_modes: Any = 16
- nr_fno_layers: int = 4
- padding: int = 8
- padding_type: str = 'constant'
- class modulus.sym.hydra.arch.FourierConf(arch_type: str = 'fourier', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, frequencies: Any = "('axis', [i for i in range(10)])", frequencies_params: Any = "('axis', [i for i in range(10)])", activation_fn: str = 'silu', layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False)[source]
Bases:
ModelConf
- activation_fn: str = 'silu'
- adaptive_activations: bool = False
- arch_type: str = 'fourier'
- frequencies: Any = "('axis', [i for i in range(10)])"
- frequencies_params: Any = "('axis', [i for i in range(10)])"
- layer_size: int = 512
- nr_layers: int = 6
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.FullyConnectedConf(arch_type: str = 'fully_connected', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, activation_fn: str = 'silu', adaptive_activations: bool = False, weight_norm: bool = True)[source]
Bases:
ModelConf
- activation_fn: str = 'silu'
- adaptive_activations: bool = False
- arch_type: str = 'fully_connected'
- layer_size: int = 512
- nr_layers: int = 6
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.FusedFourierNetConf(arch_type: str = 'fused_fourier', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 128, nr_layers: int = 6, activation_fn: str = 'sigmoid', n_frequencies: int = 12)[source]
Bases:
ModelConf
- activation_fn: str = 'sigmoid'
- arch_type: str = 'fused_fourier'
- layer_size: int = 128
- n_frequencies: int = 12
- nr_layers: int = 6
- class modulus.sym.hydra.arch.FusedGridEncodingNetConf(arch_type: str = 'fused_hash_encoding', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 128, nr_layers: int = 6, activation_fn: str = 'sigmoid', indexing: str = 'Hash', n_levels: int = 16, n_features_per_level: int = 2, log2_hashmap_size: int = 19, base_resolution: int = 16, per_level_scale: float = 2.0, interpolation: str = 'Smoothstep')[source]
Bases:
ModelConf
- activation_fn: str = 'sigmoid'
- arch_type: str = 'fused_hash_encoding'
- base_resolution: int = 16
- indexing: str = 'Hash'
- interpolation: str = 'Smoothstep'
- layer_size: int = 128
- log2_hashmap_size: int = 19
- n_features_per_level: int = 2
- n_levels: int = 16
- nr_layers: int = 6
- per_level_scale: float = 2.0
- class modulus.sym.hydra.arch.FusedMLPConf(arch_type: str = 'fused_fully_connected', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 128, nr_layers: int = 6, activation_fn: str = 'sigmoid')[source]
Bases:
ModelConf
- activation_fn: str = 'sigmoid'
- arch_type: str = 'fused_fully_connected'
- layer_size: int = 128
- nr_layers: int = 6
- class modulus.sym.hydra.arch.HighwayFourierConf(arch_type: str = 'highway_fourier', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, frequencies: Any = "('axis', [i for i in range(10)])", frequencies_params: Any = "('axis', [i for i in range(10)])", activation_fn: str = 'silu', layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, transform_fourier_features: bool = True, project_fourier_features: bool = False)[source]
Bases:
ModelConf
- activation_fn: str = 'silu'
- adaptive_activations: bool = False
- arch_type: str = 'highway_fourier'
- frequencies: Any = "('axis', [i for i in range(10)])"
- frequencies_params: Any = "('axis', [i for i in range(10)])"
- layer_size: int = 512
- nr_layers: int = 6
- project_fourier_features: bool = False
- skip_connections: bool = False
- transform_fourier_features: bool = True
- weight_norm: bool = True
- class modulus.sym.hydra.arch.ModelConf(arch_type: str = '???', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None)[source]
Bases:
object
- arch_type: str = '???'
- detach_keys: Any = '???'
- input_keys: Any = '???'
- output_keys: Any = '???'
- scaling: Any = None
- class modulus.sym.hydra.arch.ModifiedFourierConf(arch_type: str = 'modified_fourier', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, frequencies: Any = "('axis', [i for i in range(10)])", frequencies_params: Any = "('axis', [i for i in range(10)])", activation_fn: str = 'silu', layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False)[source]
Bases:
ModelConf
- activation_fn: str = 'silu'
- adaptive_activations: bool = False
- arch_type: str = 'modified_fourier'
- frequencies: Any = "('axis', [i for i in range(10)])"
- frequencies_params: Any = "('axis', [i for i in range(10)])"
- layer_size: int = 512
- nr_layers: int = 6
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.MultiplicativeFilterConf(arch_type: str = 'multiplicative_fourier', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, activation_fn: str = 'identity', filter_type: str = 'fourier', weight_norm: bool = True, input_scale: float = 10.0, gabor_alpha: float = 6.0, gabor_beta: float = 1.0, normalization: Any = None)[source]
Bases:
ModelConf
- activation_fn: str = 'identity'
- arch_type: str = 'multiplicative_fourier'
- filter_type: str = 'fourier'
- gabor_alpha: float = 6.0
- gabor_beta: float = 1.0
- input_scale: float = 10.0
- layer_size: int = 512
- normalization: Any = None
- nr_layers: int = 6
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.MultiresolutionHashNetConf(arch_type: str = 'hash_encoding', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 64, nr_layers: int = 3, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, bounds: Any = '[(1.0, 1.0), (1.0, 1.0)]', nr_levels: int = 16, nr_features_per_level: int = 2, log2_hashmap_size: int = 19, base_resolution: int = 2, finest_resolution: int = 32)[source]
Bases:
ModelConf
- adaptive_activations: bool = False
- arch_type: str = 'hash_encoding'
- base_resolution: int = 2
- bounds: Any = '[(1.0, 1.0), (1.0, 1.0)]'
- finest_resolution: int = 32
- layer_size: int = 64
- log2_hashmap_size: int = 19
- nr_features_per_level: int = 2
- nr_layers: int = 3
- nr_levels: int = 16
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.MultiscaleFourierConf(arch_type: str = 'multiscale_fourier', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, frequencies: Any = <factory>, frequencies_params: Any = None, activation_fn: str = 'silu', layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False)[source]
Bases:
ModelConf
- activation_fn: str = 'silu'
- adaptive_activations: bool = False
- arch_type: str = 'multiscale_fourier'
- frequencies: Any
- frequencies_params: Any = None
- layer_size: int = 512
- nr_layers: int = 6
- skip_connections: bool = False
- weight_norm: bool = True
- class modulus.sym.hydra.arch.Pix2PixConf(arch_type: str = 'pix2pix', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, dimension: int = '???', conv_layer_size: int = 64, n_downsampling: int = 3, n_blocks: int = 3, scaling_factor: int = 1, batch_norm: bool = True, padding_type: str = 'reflect', activation_fn: str = 'relu')[source]
Bases:
ModelConf
- activation_fn: str = 'relu'
- arch_type: str = 'pix2pix'
- batch_norm: bool = True
- conv_layer_size: int = 64
- dimension: int = '???'
- n_blocks: int = 3
- n_downsampling: int = 3
- padding_type: str = 'reflect'
- scaling_factor: int = 1
- class modulus.sym.hydra.arch.SRResConf(arch_type: str = 'super_res', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, large_kernel_size: int = 7, small_kernel_size: int = 3, conv_layer_size: int = 32, n_resid_blocks: int = 8, scaling_factor: int = 8, activation_fn: str = 'prelu')[source]
Bases:
ModelConf
- activation_fn: str = 'prelu'
- arch_type: str = 'super_res'
- conv_layer_size: int = 32
- large_kernel_size: int = 7
- n_resid_blocks: int = 8
- scaling_factor: int = 8
- small_kernel_size: int = 3
- class modulus.sym.hydra.arch.SirenConf(arch_type: str = 'siren', input_keys: Any = '???', output_keys: Any = '???', detach_keys: Any = '???', scaling: Any = None, layer_size: int = 512, nr_layers: int = 6, first_omega: float = 30.0, omega: float = 30.0, normalization: Any = None)[source]
Bases:
ModelConf
- arch_type: str = 'siren'
- first_omega: float = 30.0
- layer_size: int = 512
- normalization: Any = None
- nr_layers: int = 6
- omega: float = 30.0
- modulus.sym.hydra.arch.register_arch_configs() → None[source]
Modulus main config
- class modulus.sym.hydra.config.DebugModulusConfig(network_dir: str = '.', initialization_network_dir: str = '', save_filetypes: str = 'vtk', summary_histograms: bool = False, jit: bool = True, jit_use_nvfuser: bool = True, jit_arch_mode: str = 'only_activation', jit_autograd_nodes: bool = False, cuda_graphs: bool = True, cuda_graph_warmup: int = 20, find_unused_parameters: bool = False, broadcast_buffers: bool = False, device: str = '', debug: bool = True, run_mode: str = 'train', arch: Any = '???', models: Any = '???', training: modulus.sym.hydra.training.TrainingConf = '???', stop_criterion: modulus.sym.hydra.training.StopCriterionConf = '???', loss: modulus.sym.hydra.loss.LossConf = '???', optimizer: modulus.sym.hydra.optimizer.OptimizerConf = '???', scheduler: modulus.sym.hydra.scheduler.SchedulerConf = '???', batch_size: Any = '???', profiler: modulus.sym.hydra.profiler.ProfilerConf = '???', hydra: Any = <factory>, custom: Any = '???', defaults: List[Any] = <factory>)[source]
Bases:
ModulusConfig
- debug: bool = True
- defaults: List[Any]
- class modulus.sym.hydra.config.DefaultModulusConfig(network_dir: str = '.', initialization_network_dir: str = '', save_filetypes: str = 'vtk', summary_histograms: bool = False, jit: bool = True, jit_use_nvfuser: bool = True, jit_arch_mode: str = 'only_activation', jit_autograd_nodes: bool = False, cuda_graphs: bool = True, cuda_graph_warmup: int = 20, find_unused_parameters: bool = False, broadcast_buffers: bool = False, device: str = '', debug: bool = False, run_mode: str = 'train', arch: Any = '???', models: Any = '???', training: modulus.sym.hydra.training.TrainingConf = '???', stop_criterion: modulus.sym.hydra.training.StopCriterionConf = '???', loss: modulus.sym.hydra.loss.LossConf = '???', optimizer: modulus.sym.hydra.optimizer.OptimizerConf = '???', scheduler: modulus.sym.hydra.scheduler.SchedulerConf = '???', batch_size: Any = '???', profiler: modulus.sym.hydra.profiler.ProfilerConf = '???', hydra: Any = <factory>, custom: Any = '???', defaults: List[Any] = <factory>)[source]
Bases:
ModulusConfig
- defaults: List[Any]
- class modulus.sym.hydra.config.ExperimentalModulusConfig(network_dir: str = '.', initialization_network_dir: str = '', save_filetypes: str = 'vtk', summary_histograms: bool = False, jit: bool = True, jit_use_nvfuser: bool = True, jit_arch_mode: str = 'only_activation', jit_autograd_nodes: bool = False, cuda_graphs: bool = True, cuda_graph_warmup: int = 20, find_unused_parameters: bool = False, broadcast_buffers: bool = False, device: str = '', debug: bool = False, run_mode: str = 'train', arch: Any = '???', models: Any = '???', training: modulus.sym.hydra.training.TrainingConf = '???', stop_criterion: modulus.sym.hydra.training.StopCriterionConf = '???', loss: modulus.sym.hydra.loss.LossConf = '???', optimizer: modulus.sym.hydra.optimizer.OptimizerConf = '???', scheduler: modulus.sym.hydra.scheduler.SchedulerConf = '???', batch_size: Any = '???', profiler: modulus.sym.hydra.profiler.ProfilerConf = '???', hydra: Any = <factory>, custom: Any = '???', defaults: List[Any] = <factory>, pde: modulus.sym.hydra.pde.PDEConf = '???')[source]
Bases:
ModulusConfig
- defaults: List[Any]
- pde: PDEConf = '???'
- class modulus.sym.hydra.config.ModulusConfig(network_dir: str = '.', initialization_network_dir: str = '', save_filetypes: str = 'vtk', summary_histograms: bool = False, jit: bool = True, jit_use_nvfuser: bool = True, jit_arch_mode: str = 'only_activation', jit_autograd_nodes: bool = False, cuda_graphs: bool = True, cuda_graph_warmup: int = 20, find_unused_parameters: bool = False, broadcast_buffers: bool = False, device: str = '', debug: bool = False, run_mode: str = 'train', arch: Any = '???', models: Any = '???', training: modulus.sym.hydra.training.TrainingConf = '???', stop_criterion: modulus.sym.hydra.training.StopCriterionConf = '???', loss: modulus.sym.hydra.loss.LossConf = '???', optimizer: modulus.sym.hydra.optimizer.OptimizerConf = '???', scheduler: modulus.sym.hydra.scheduler.SchedulerConf = '???', batch_size: Any = '???', profiler: modulus.sym.hydra.profiler.ProfilerConf = '???', hydra: Any = <factory>, custom: Any = '???')[source]
Bases:
object
- arch: Any = '???'
- batch_size: Any = '???'
- broadcast_buffers: bool = False
- cuda_graph_warmup: int = 20
- cuda_graphs: bool = True
- custom: Any = '???'
- debug: bool = False
- device: str = ''
- find_unused_parameters: bool = False
- hydra: Any
- initialization_network_dir: str = ''
- jit: bool = True
- jit_arch_mode: str = 'only_activation'
- jit_autograd_nodes: bool = False
- jit_use_nvfuser: bool = True
- loss: LossConf = '???'
- models: Any = '???'
- network_dir: str = '.'
- optimizer: OptimizerConf = '???'
- profiler: ProfilerConf = '???'
- run_mode: str = 'train'
- save_filetypes: str = 'vtk'
- scheduler: SchedulerConf = '???'
- stop_criterion: StopCriterionConf = '???'
- summary_histograms: bool = False
- training: TrainingConf = '???'
- modulus.sym.hydra.config.register_modulus_configs() → None[source]
Hydra related configs
- class modulus.sym.hydra.hydra.DebugFormat(format: str = '[%(levelname)s][%(asctime)s][%(module)s] - %(message)s', datefmt: str = '%Y-%m-%d %H:%M:%S')[source]
Bases:
object
- datefmt: str = '%Y-%m-%d %H:%M:%S'
- format: str = '[%(levelname)s][%(asctime)s][%(module)s] - %(message)s'
- class modulus.sym.hydra.hydra.DebugLogging(version: int = 1, formatters: Any = <factory>, handlers: Any = <factory>, root: Any = <factory>, disable_existing_loggers: bool = False, level: int = 0)[source]
Bases:
object
- disable_existing_loggers: bool = False
- formatters: Any
- handlers: Any
- level: int = 0
- root: Any
- version: int = 1
- class modulus.sym.hydra.hydra.DefaultLogging(version: int = 1, formatters: Any = <factory>, handlers: Any = <factory>, root: Any = <factory>, disable_existing_loggers: bool = False, level: int = 20)[source]
Bases:
object
- disable_existing_loggers: bool = False
- formatters: Any
- handlers: Any
- level: int = 20
- root: Any
- version: int = 1
- class modulus.sym.hydra.hydra.SimpleFormat(format: str = '[%(asctime)s] - %(message)s', datefmt: str = '%H:%M:%S')[source]
Bases:
object
- datefmt: str = '%H:%M:%S'
- format: str = '[%(asctime)s] - %(message)s'
- modulus.sym.hydra.hydra.register_hydra_configs() → None[source]
Supported Modulus loss aggregator configs
- class modulus.sym.hydra.loss.AggregatorGradNormConf(_target_: str = 'modulus.sym.loss.aggregator.GradNorm', weights: Any = None, alpha: float = 1.0)[source]
Bases:
LossConf
- alpha: float = 1.0
- class modulus.sym.hydra.loss.AggregatorHomoscedasticConf(_target_: str = 'modulus.sym.loss.aggregator.HomoscedasticUncertainty', weights: Any = None)[source]
Bases: LossConf
- class modulus.sym.hydra.loss.AggregatorLRAnnealingConf(_target_: str = 'modulus.sym.loss.aggregator.LRAnnealing', weights: Any = None, update_freq: int = 1, alpha: float = 0.01, ref_key: Any = None, eps: float = 1e-08)[source]
Bases:
LossConf
- alpha: float = 0.01
- eps: float = 1e-08
- ref_key: Any = None
- update_freq: int = 1
- class modulus.sym.hydra.loss.AggregatorRelobraloConf(_target_: str = 'modulus.sym.loss.aggregator.Relobralo', weights: Any = None, alpha: float = 0.95, beta: float = 0.99, tau: float = 1.0, eps: float = 1e-08)[source]
Bases:
LossConf
- alpha: float = 0.95
- beta: float = 0.99
- eps: float = 1e-08
- tau: float = 1.0
- class modulus.sym.hydra.loss.AggregatorResNormConf(_target_: str = 'modulus.sym.loss.aggregator.ResNorm', weights: Any = None, alpha: float = 1.0)[source]
Bases:
LossConf
- alpha: float = 1.0
- class modulus.sym.hydra.loss.AggregatorSoftAdaptConf(_target_: str = 'modulus.sym.loss.aggregator.SoftAdapt', weights: Any = None, eps: float = 1e-08)[source]
Bases:
LossConf
- eps: float = 1e-08
- class modulus.sym.hydra.loss.AggregatorSumConf(_target_: str = 'modulus.sym.loss.aggregator.Sum', weights: Any = None)[source]
Bases: LossConf
- class modulus.sym.hydra.loss.LossConf(_target_: str = '???', weights: Any = None)[source]
Bases:
object
- weights: Any = None
- class modulus.sym.hydra.loss.NTKConf(use_ntk: bool = False, save_name: Any = None, run_freq: int = 1000)[source]
Bases:
object
- run_freq: int = 1000
- save_name: Any = None
- use_ntk: bool = False
- modulus.sym.hydra.loss.register_loss_configs() → None[source]
Supported optimizer configs
- class modulus.sym.hydra.optimizer.A2GradExpConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.A2GradExp', lr: float = 0.01, beta: float = 10.0, lips: float = 10.0)[source]
Bases:
OptimizerConf
- beta: float = 10.0
- lips: float = 10.0
- lr: float = 0.01
- class modulus.sym.hydra.optimizer.A2GradIncConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.A2GradInc', lr: float = 0.01, beta: float = 10.0, lips: float = 10.0)[source]
Bases:
OptimizerConf
- beta: float = 10.0
- lips: float = 10.0
- lr: float = 0.01
- class modulus.sym.hydra.optimizer.A2GradUniConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.A2GradUni', lr: float = 0.01, beta: float = 10.0, lips: float = 10.0)[source]
Bases:
OptimizerConf
- beta: float = 10.0
- lips: float = 10.0
- lr: float = 0.01
- class modulus.sym.hydra.optimizer.ASGDConf(_params_: Any = <factory>, _target_: str = 'torch.optim.ASGD', lr: float = 0.01, lambd: float = 0.0001, alpha: float = 0.75, t0: float = 1000000.0, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- alpha: float = 0.75
- lambd: float = 0.0001
- lr: float = 0.01
- t0: float = 1000000.0
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AccSGDConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.AccSGD', lr: float = 0.001, kappa: float = 1000.0, xi: float = 10.0, small_const: float = 0.7, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- kappa: float = 1000.0
- lr: float = 0.001
- small_const: float = 0.7
- weight_decay: float = 0
- xi: float = 10.0
- class modulus.sym.hydra.optimizer.AdaBeliefConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.AdaBelief', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 0.001, weight_decay: float = 0, amsgrad: bool = False, weight_decouple: bool = False, fixed_decay: bool = False, rectify: bool = False)[source]
Bases:
OptimizerConf
- amsgrad: bool = False
- betas: List[float]
- eps: float = 0.001
- fixed_decay: bool = False
- lr: float = 0.001
- rectify: bool = False
- weight_decay: float = 0
- weight_decouple: bool = False
- class modulus.sym.hydra.optimizer.AdaBoundConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.AdaBound', lr: float = 0.001, betas: List[float] = <factory>, final_lr: float = 0.1, gamma: float = 0.001, eps: float = 1e-08, weight_decay: float = 0, amsbound: bool = False)[source]
Bases:
OptimizerConf
- amsbound: bool = False
- betas: List[float]
- eps: float = 1e-08
- final_lr: float = 0.1
- gamma: float = 0.001
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdaModConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.AdaMod', lr: float = 0.001, betas: List[float] = <factory>, beta3: float = 0.999, eps: float = 1e-08, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- beta3: float = 0.999
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdadeltaConf(_params_: Any = <factory>, _target_: str = 'torch.optim.Adadelta', lr: float = 1.0, rho: float = 0.9, eps: float = 1e-06, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- eps: float = 1e-06
- lr: float = 1.0
- rho: float = 0.9
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdafactorConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Adafactor', lr: float = 0.001, eps2: List[float] = <factory>, clip_threshold: float = 1.0, decay_rate: float = -0.8, beta1: Any = None, weight_decay: float = 0, scale_parameter: bool = True, relative_step: bool = True, warmup_init: bool = False)[source]
Bases:
OptimizerConf
- beta1: Any = None
- clip_threshold: float = 1.0
- decay_rate: float = -0.8
- eps2: List[float]
- lr: float = 0.001
- relative_step: bool = True
- scale_parameter: bool = True
- warmup_init: bool = False
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdagradConf(_params_: Any = <factory>, _target_: str = 'torch.optim.Adagrad', lr: float = 0.01, lr_decay: float = 0, weight_decay: float = 0, initial_accumulator_value: float = 0, eps: float = 1e-10)[source]
Bases:
OptimizerConf
- eps: float = 1e-10
- initial_accumulator_value: float = 0
- lr: float = 0.01
- lr_decay: float = 0
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdahessianConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Adahessian', lr: float = 0.1, betas: List[float] = <factory>, eps: float = 0.0001, weight_decay: float = 0.0, hessian_power: float = 1.0)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 0.0001
- hessian_power: float = 1.0
- lr: float = 0.1
- weight_decay: float = 0.0
- class modulus.sym.hydra.optimizer.AdamConf(_params_: Any = <factory>, _target_: str = 'torch.optim.Adam', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0, amsgrad: bool = False)[source]
Bases:
OptimizerConf
- amsgrad: bool = False
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdamPConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.AdamP', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0, delta: float = 0.1, wd_ratio: float = 0.1)[source]
Bases:
OptimizerConf
- betas: List[float]
- delta: float = 0.1
- eps: float = 1e-08
- lr: float = 0.001
- wd_ratio: float = 0.1
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AdamWConf(_params_: Any = <factory>, _target_: str = 'torch.optim.AdamW', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0.01, amsgrad: bool = False)[source]
Bases:
OptimizerConf
- amsgrad: bool = False
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- weight_decay: float = 0.01
- class modulus.sym.hydra.optimizer.AdamaxConf(_params_: Any = <factory>, _target_: str = 'torch.optim.Adamax', lr: float = 0.002, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.002
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.AggMoConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.AggMo', lr: float = 0.001, betas: List[float] = <factory>, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- betas: List[float]
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.ApolloConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Apollo', lr: float = 0.01, beta: float = 0.9, eps: float = 0.0001, warmup: int = 0, init_lr: float = 0.01, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- beta: float = 0.9
- eps: float = 0.0001
- init_lr: float = 0.01
- lr: float = 0.01
- warmup: int = 0
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.BFGSConf(_params_: Any = <factory>, _target_: str = 'torch.optim.LBFGS', lr: float = 1.0, max_iter: int = 1000, max_eval: Any = None, tolerance_grad: float = 1e-07, tolerance_change: float = 1e-09, history_size: int = 100, line_search_fn: Any = None)[source]
Bases:
OptimizerConf
- history_size: int = 100
- line_search_fn: Any = None
- lr: float = 1.0
- max_eval: Any = None
- max_iter: int = 1000
- tolerance_change: float = 1e-09
- tolerance_grad: float = 1e-07
- class modulus.sym.hydra.optimizer.DiffGradConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.DiffGrad', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.LambConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Lamb', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.MADGRADConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.MADGRAD', lr: float = 0.01, momentum: float = 0.9, weight_decay: float = 0, eps: float = 1e-06)[source]
Bases:
OptimizerConf
- eps: float = 1e-06
- lr: float = 0.01
- momentum: float = 0.9
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.NAdamConf(_params_: Any = <factory>, _target_: str = 'torch.optim.NAdam', lr: float = 0.002, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0, momentum_decay: float = 0.004)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.002
- momentum_decay: float = 0.004
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.NovoGradConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.NovoGrad', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0, grad_averaging: bool = False, amsgrad: bool = False)[source]
Bases:
OptimizerConf
- amsgrad: bool = False
- betas: List[float]
- eps: float = 1e-08
- grad_averaging: bool = False
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.OptimizerConf(_params_: Any = <factory>)[source]
Bases: object
- class modulus.sym.hydra.optimizer.PIDConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.PID', lr: float = 0.001, momentum: float = 0, dampening: float = 0, weight_decay: float = 0.01, integral: float = 5.0, derivative: float = 10.0)[source]
Bases:
OptimizerConf
- dampening: float = 0
- derivative: float = 10.0
- integral: float = 5.0
- lr: float = 0.001
- momentum: float = 0
- weight_decay: float = 0.01
- class modulus.sym.hydra.optimizer.QHAdamConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.QHAdam', lr: float = 0.001, betas: List[float] = <factory>, nus: List[float] = <factory>, weight_decay: float = 0, decouple_weight_decay: bool = False, eps: float = 1e-08)[source]
Bases:
OptimizerConf
- betas: List[float]
- decouple_weight_decay: bool = False
- eps: float = 1e-08
- lr: float = 0.001
- nus: List[float]
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.QHMConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.QHM', lr: float = 0.001, momentum: float = 0, nu: float = 0.7, weight_decay: float = 0.01, weight_decay_type: str = 'grad')[source]
Bases:
OptimizerConf
- lr: float = 0.001
- momentum: float = 0
- nu: float = 0.7
- weight_decay: float = 0.01
- weight_decay_type: str = 'grad'
- class modulus.sym.hydra.optimizer.RAdamConf(_params_: Any = <factory>, _target_: str = 'torch.optim.RAdam', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.RMSpropConf(_params_: Any = <factory>, _target_: str = 'torch.optim.RMSprop', lr: float = 0.01, alpha: float = 0.99, eps: float = 1e-08, weight_decay: float = 0, momentum: float = 0, centered: bool = False)[source]
Bases:
OptimizerConf
- alpha: float = 0.99
- centered: bool = False
- eps: float = 1e-08
- lr: float = 0.01
- momentum: float = 0
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.RangerConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Ranger', lr: float = 0.001, alpha: float = 0.5, k: int = 6, N_sma_threshhold: int = 5, betas: List[float] = <factory>, eps: float = 1e-05, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- N_sma_threshhold: int = 5
- alpha: float = 0.5
- betas: List[float]
- eps: float = 1e-05
- k: int = 6
- lr: float = 0.001
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.RangerQHConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.RangerQH', lr: float = 0.001, betas: List[float] = <factory>, nus: List[float] = <factory>, weight_decay: float = 0, k: int = 6, alpha: float = 0.5, decouple_weight_decay: bool = False, eps: float = 1e-08)[source]
Bases:
OptimizerConf
- alpha: float = 0.5
- betas: List[float]
- decouple_weight_decay: bool = False
- eps: float = 1e-08
- k: int = 6
- lr: float = 0.001
- nus: List[float]
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.RangerVAConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.RangerVA', lr: float = 0.001, alpha: float = 0.5, k: int = 6, n_sma_threshhold: int = 5, betas: List[float] = <factory>, eps: float = 1e-05, weight_decay: float = 0, amsgrad: bool = True, transformer: str = 'softplus', smooth: int = 50, grad_transformer: str = 'square')[source]
Bases:
OptimizerConf
- alpha: float = 0.5
- amsgrad: bool = True
- betas: List[float]
- eps: float = 1e-05
- grad_transformer: str = 'square'
- k: int = 6
- lr: float = 0.001
- n_sma_threshhold: int = 5
- smooth: int = 50
- transformer: str = 'softplus'
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.RpropConf(_params_: Any = <factory>, _target_: str = 'torch.optim.Rprop', lr: float = 0.01, etas: List[float] = <factory>, step_sizes: List[float] = <factory>)[source]
Bases:
OptimizerConf
- etas: List[float]
- lr: float = 0.01
- step_sizes: List[float]
- class modulus.sym.hydra.optimizer.SGDConf(_params_: Any = <factory>, _target_: str = 'torch.optim.SGD', lr: float = 0.001, momentum: float = 0.01, dampening: float = 0, weight_decay: float = 0, nesterov: bool = False)[source]
Bases:
OptimizerConf
- dampening: float = 0
- lr: float = 0.001
- momentum: float = 0.01
- nesterov: bool = False
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.SGDPConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.SGDP', lr: float = 0.001, momentum: float = 0, dampening: float = 0, weight_decay: float = 0.01, nesterov: bool = False, delta: float = 0.1, wd_ratio: float = 0.1)[source]
Bases:
OptimizerConf
- dampening: float = 0
- delta: float = 0.1
- lr: float = 0.001
- momentum: float = 0
- nesterov: bool = False
- wd_ratio: float = 0.1
- weight_decay: float = 0.01
- class modulus.sym.hydra.optimizer.SGDWConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.SGDW', lr: float = 0.001, momentum: float = 0, dampening: float = 0, weight_decay: float = 0.01, nesterov: bool = False)[source]
Bases:
OptimizerConf
- dampening: float = 0
- lr: float = 0.001
- momentum: float = 0
- nesterov: bool = False
- weight_decay: float = 0.01
- class modulus.sym.hydra.optimizer.SWATSConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.SWATS', lr: float = 0.1, betas: List[float] = <factory>, eps: float = 0.001, weight_decay: float = 0, amsgrad: bool = False, nesterov: bool = False)[source]
Bases:
OptimizerConf
- amsgrad: bool = False
- betas: List[float]
- eps: float = 0.001
- lr: float = 0.1
- nesterov: bool = False
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.ShampooConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Shampoo', lr: float = 0.1, momentum: float = 0, weight_decay: float = 0, epsilon: float = 0.0001, update_freq: int = 1)[source]
Bases:
OptimizerConf
- epsilon: float = 0.0001
- lr: float = 0.1
- momentum: float = 0
- update_freq: int = 1
- weight_decay: float = 0
- class modulus.sym.hydra.optimizer.SparseAdamConf(_params_: Any = <factory>, _target_: str = 'torch.optim.SparseAdam', lr: float = 0.001, betas: List[float] = <factory>, eps: float = 1e-08)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 1e-08
- lr: float = 0.001
- class modulus.sym.hydra.optimizer.YogiConf(_params_: Any = <factory>, _target_: str = 'torch_optimizer.Yogi', lr: float = 0.01, betas: List[float] = <factory>, eps: float = 0.001, initial_accumulator: float = 1e-06, weight_decay: float = 0)[source]
Bases:
OptimizerConf
- betas: List[float]
- eps: float = 0.001
- initial_accumulator: float = 1e-06
- lr: float = 0.01
- weight_decay: float = 0
- modulus.sym.hydra.optimizer.register_optimizer_configs() → None[source]
Profiler config
- class modulus.sym.hydra.profiler.NvtxProfiler(profile: bool = False, start_step: int = 0, end_step: int = 100, name: str = 'nvtx')[source]
Bases:
ProfilerConf
- end_step: int = 100
- name: str = 'nvtx'
- profile: bool = False
- start_step: int = 0
- class modulus.sym.hydra.profiler.ProfilerConf(profile: bool = '???', start_step: int = '???', end_step: int = '???')[source]
Bases:
object
- end_step: int = '???'
- profile: bool = '???'
- start_step: int = '???'
- class modulus.sym.hydra.profiler.TensorBoardProfiler(profile: bool = False, start_step: int = 0, end_step: int = 100, name: str = 'tensorboard', warmup: int = 5, repeat: int = 1, filename: str = '${hydra.job.override_dirname}-${hydra.job.name}.profile')[source]
Bases:
ProfilerConf
- end_step: int = 100
- filename: str = '${hydra.job.override_dirname}-${hydra.job.name}.profile'
- name: str = 'tensorboard'
- profile: bool = False
- repeat: int = 1
- start_step: int = 0
- warmup: int = 5
- modulus.sym.hydra.profiler.register_profiler_configs() → None[source]
Supported PyTorch scheduler configs
- class modulus.sym.hydra.scheduler.CosineAnnealingLRConf(_target_: str = 'torch.optim.lr_scheduler.CosineAnnealingLR', T_max: int = 1000, eta_min: float = 0, last_epoch: int = -1)[source]
Bases:
SchedulerConf
- T_max: int = 1000
- eta_min: float = 0
- last_epoch: int = -1
- class modulus.sym.hydra.scheduler.CosineAnnealingWarmRestartsConf(_target_: str = 'torch.optim.lr_scheduler.CosineAnnealingWarmRestarts', T_0: int = 1000, T_mult: int = 1, eta_min: float = 0, last_epoch: int = -1)[source]
Bases:
SchedulerConf
- T_0: int = 1000
- T_mult: int = 1
- eta_min: float = 0
- last_epoch: int = -1
- class modulus.sym.hydra.scheduler.ExponentialLRConf(_target_: str = 'torch.optim.lr_scheduler.ExponentialLR', gamma: float = 0.99998718)[source]
Bases:
SchedulerConf
- gamma: float = 0.99998718
- class modulus.sym.hydra.scheduler.SchedulerConf[source]
Bases: object
- class modulus.sym.hydra.scheduler.TFExponentialLRConf(_target_: str = 'custom', _name_: str = 'tf.ExponentialLR', decay_rate: float = 0.95, decay_steps: int = 1000)[source]
Bases:
SchedulerConf
- decay_rate: float = 0.95
- decay_steps: int = 1000
- modulus.sym.hydra.scheduler.register_scheduler_configs() → None[source]
Supported modulus training paradigms
- class modulus.sym.hydra.training.DefaultStopCriterion(metric: Any = None, min_delta: Any = None, patience: int = 50000, mode: str = 'min', freq: int = 1000, strict: bool = False)[source]
Bases:
StopCriterionConf
- freq: int = 1000
- metric: Any = None
- min_delta: Any = None
- mode: str = 'min'
- patience: int = 50000
- strict: bool = False
- class modulus.sym.hydra.training.DefaultTraining(max_steps: int = 10000, grad_agg_freq: int = 1, rec_results_freq: int = 1000, rec_validation_freq: int = '${training.rec_results_freq}', rec_inference_freq: int = '${training.rec_results_freq}', rec_monitor_freq: int = '${training.rec_results_freq}', rec_constraint_freq: int = '${training.rec_results_freq}', save_network_freq: int = 1000, print_stats_freq: int = 100, summary_freq: int = 1000, amp: bool = False, amp_dtype: str = 'float16', ntk: modulus.sym.hydra.loss.NTKConf = NTKConf(use_ntk=False, save_name=None, run_freq=1000))[source]
Bases:
TrainingConf
- amp: bool = False
- amp_dtype: str = 'float16'
- grad_agg_freq: int = 1
- max_steps: int = 10000
- ntk: NTKConf = NTKConf(use_ntk=False, save_name=None, run_freq=1000)
- print_stats_freq: int = 100
- rec_constraint_freq: int = '${training.rec_results_freq}'
- rec_inference_freq: int = '${training.rec_results_freq}'
- rec_monitor_freq: int = '${training.rec_results_freq}'
- rec_results_freq: int = 1000
- rec_validation_freq: int = '${training.rec_results_freq}'
- save_network_freq: int = 1000
- summary_freq: int = 1000
- class modulus.sym.hydra.training.StopCriterionConf(metric: Any = '???', min_delta: Any = '???', patience: int = '???', mode: str = '???', freq: int = '???', strict: bool = '???')[source]
Bases:
object
- freq: int = '???'
- metric: Any = '???'
- min_delta: Any = '???'
- mode: str = '???'
- patience: int = '???'
- strict: bool = '???'
- class modulus.sym.hydra.training.TrainingConf(max_steps: int = '???', grad_agg_freq: int = '???', rec_results_freq: int = '???', rec_validation_freq: int = '???', rec_inference_freq: int = '???', rec_monitor_freq: int = '???', rec_constraint_freq: int = '???', save_network_freq: int = '???', print_stats_freq: int = '???', summary_freq: int = '???', amp: bool = '???', amp_dtype: str = '???')[source]
Bases:
object
- amp: bool = '???'
- amp_dtype: str = '???'
- grad_agg_freq: int = '???'
- max_steps: int = '???'
- print_stats_freq: int = '???'
- rec_constraint_freq: int = '???'
- rec_inference_freq: int = '???'
- rec_monitor_freq: int = '???'
- rec_results_freq: int = '???'
- rec_validation_freq: int = '???'
- save_network_freq: int = '???'
- summary_freq: int = '???'
- class modulus.sym.hydra.training.VariationalTraining(max_steps: int = 10000, grad_agg_freq: int = 1, rec_results_freq: int = 1000, rec_validation_freq: int = '${training.rec_results_freq}', rec_inference_freq: int = '${training.rec_results_freq}', rec_monitor_freq: int = '${training.rec_results_freq}', rec_constraint_freq: int = '${training.rec_results_freq}', save_network_freq: int = 1000, print_stats_freq: int = 100, summary_freq: int = 1000, amp: bool = False, amp_dtype: str = 'float16', ntk: modulus.sym.hydra.loss.NTKConf = NTKConf(use_ntk=False, save_name=None, run_freq=1000), test_function: str = '???', use_quadratures: bool = False)[source]
Bases:
DefaultTraining
- test_function: str = '???'
- use_quadratures: bool = False
- modulus.sym.hydra.training.register_training_configs() → None[source]
- modulus.sym.hydra.utils.add_hydra_run_path(path: Union[str, Path]) → Path[source]
Prepends current hydra run path
- modulus.sym.hydra.utils.compose(config_name: Optional[str] = None, config_path: Optional[str] = None, overrides: List[str] = [], return_hydra_config: bool = False, job_name: Optional[str] = 'app', caller_stack_depth: int = 2) → DictConfig[source]
Internal Modulus config initializer and compose function. This is an alternative for initializing a Hydra config which should be used as a last ditch effort in cases where @modulus.main() cannot work. For more info see: https://hydra.cc/docs/advanced/compose_api/
- Parameters
config_name (str) – Modulus config name
config_path (str) – Path to config file relative to the caller at location caller_stack_depth
overrides (list of strings) – List of overrides
return_hydra_config (bool) – Return the hydra options in the dict config
job_name (string) – Name of program run instance
caller_stack_depth (int) – Stack depth of this function call (needed for finding config relative to python).
- modulus.sym.hydra.utils.main(config_path: str, config_name: str = 'config')[source]
Modified decorator for loading hydra configs in modulus See: https://github.com/facebookresearch/hydra/blob/main/hydra/main.py
- modulus.sym.hydra.utils.to_absolute_path(*args: Union[str, Path])[source]
Converts file path to absolute path based on run file location Modified from: https://github.com/facebookresearch/hydra/blob/main/hydra/utils.py
- modulus.sym.hydra.utils.to_yaml(cfg: DictConfig)[source]
Converges dict config into a YML string