Program Listing for File holoinfer_buffer.hpp
↰ Return to documentation for file (modules/holoinfer/src/include/holoinfer_buffer.hpp
)
/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _HOLOSCAN_INFER_BUFFER_H
#define _HOLOSCAN_INFER_BUFFER_H
#include <cuda_runtime_api.h>
#include <sys/stat.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <mutex>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "holoinfer_constants.hpp"
#define _HOLOSCAN_EXTERNAL_API_ __attribute__((visibility("default")))
namespace holoscan {
namespace inference {
uint32_t get_element_size(holoinfer_datatype t) noexcept;
class DeviceAllocator {
public:
bool operator()(void** ptr, size_t size) const;
};
class DeviceFree {
public:
void operator()(void* ptr) const;
};
class DeviceBuffer {
public:
explicit DeviceBuffer(holoinfer_datatype type = holoinfer_datatype::hFloat);
DeviceBuffer(size_t size, holoinfer_datatype type);
void* data();
size_t size() const;
size_t get_bytes() const;
void resize(size_t element_size);
~DeviceBuffer();
private:
size_t size_{0}, capacity_{0};
holoinfer_datatype type_ = holoinfer_datatype::hFloat;
void* buffer_ = nullptr;
DeviceAllocator allocator_;
DeviceFree free_;
};
class DataBuffer {
public:
DataBuffer();
std::shared_ptr<DeviceBuffer> device_buffer;
std::vector<float> host_buffer;
};
using DataMap = std::map<std::string, std::shared_ptr<DataBuffer>>;
using Mappings = std::map<std::string, std::string>;
using DimType = std::map<std::string, std::vector<int64_t>>;
using MultiMappings = std::map<std::string, std::vector<std::string>>;
struct MultiAISpecs {
MultiAISpecs() = default;
MultiAISpecs(const std::string& backend, const Mappings& model_path_map,
const Mappings& inference_map, bool is_engine_path, bool oncpu, bool parallel_proc,
bool use_fp16, bool cuda_buffer_in, bool cuda_buffer_out)
: backend_type_(backend),
model_path_map_(model_path_map),
inference_map_(inference_map),
is_engine_path_(is_engine_path),
oncuda_(!oncpu),
parallel_processing_(parallel_proc),
use_fp16_(use_fp16),
cuda_buffer_in_(cuda_buffer_in),
cuda_buffer_out_(cuda_buffer_out) {}
Mappings get_path_map() const { return model_path_map_; }
std::string backend_type_{"trt"};
Mappings model_path_map_;
Mappings inference_map_;
bool is_engine_path_ = false;
bool oncuda_ = true;
bool parallel_processing_ = false;
bool use_fp16_ = false;
bool cuda_buffer_in_ = true;
bool cuda_buffer_out_ = true;
DataMap data_per_model_;
DataMap data_per_tensor_;
DataMap output_per_model_;
};
InferStatus allocate_host_device_buffers(DataMap& buffers, std::vector<int64_t>& dims_map,
const std::string& mappings);
InferStatus allocate_host_buffers(DataMap& buffers, std::vector<int64_t>& dims,
const std::string& keyname);
} // namespace inference
} // namespace holoscan
#endif