Large Language Models

To learn more about using NeMo to train Large Language Models at scale, please refer to the NeMo Framework User Guide.

  • GPT-style models (decoder only)

  • T5/BART/UL2-style models (encoder-decoder)

  • BERT-style models (encoder only)

  • RETRO model (decoder only)

[nlp-megatron1]

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of large language models via positional interpolation. 2023. arXiv:2306.15595.

[nlp-megatron2]

Ta-Chung Chi, Ting-Han Fan, Peter J. Ramadge, and Alexander I. Rudnicky. Kerple: kernelized relative positional embedding for length extrapolation. 2022. arXiv:2205.09921.

[nlp-megatron3]

Ta-Chung Chi, Ting-Han Fan, Alexander I. Rudnicky, and Peter J. Ramadge. Dissecting transformer length extrapolation via the lens of receptive field analysis. 2023. arXiv:2212.10356.

[nlp-megatron4]

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: fast and memory-efficient exact attention with io-awareness. 2022. arXiv:2205.14135.

[nlp-megatron5]

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: attention with linear biases enables input length extrapolation. 2022. arXiv:2108.12409.

[nlp-megatron6]

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. 2018. arXiv:1803.02155.

[nlp-megatron7]

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[nlp-megatron8]

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: enhanced transformer with rotary position embedding. 2022. arXiv:2104.09864.

[nlp-megatron9]

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary, Xia Song, and Furu Wei. A length-extrapolatable transformer. 2022. arXiv:2212.10554.

[nlp-megatron10]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2023. arXiv:1706.03762.

Previous Community Model Converter Development Guide
Next Migrating from Megatron-LM
© Copyright 2023-2024, NVIDIA. Last updated on Apr 12, 2024.