Important

You are viewing the NeMo 2.0 documentation. This release introduces significant changes to the API and a new library, NeMo Run. We are currently porting all features from NeMo 1.0 to 2.0. For documentation on previous versions or features not yet available in 2.0, please refer to the NeMo 24.07 documentation.

Performance#

The NVIDIA NeMo Framework accelerates the entire AI workflow end-to-end, from data preparation to model training to inference. It provides optimal performance for training advanced generative AI models by incorporating the most recent training techniques, such as model parallelization, optimized attention mechanisms, and more, to achieve high training throughput. For inference, the NeMo Framework provides a path that leverages TensorRT-LLM, a specialized library for accelerating and optimizing LLM inference on NVIDIA GPUs.

Below, you can see performance benchmarks for various large language models.

Performance Summary for Large Language Models#

Pretraining#

The table below shows the pre-training performance of various models at FP8 precision (using NeMo 2.0).

Model

#-GPUs

GBS

MBS

Sequence Length

TP

PP

CP

VP

Tokens / sec / GPU

Model TFLOP / sec / GPU

Est. time to train in days (10T tokens, 1K GPUs)

GPT3-175B

128

256

1

2048

4

8

1

6

794

854 (dropout > 0)

142

GPT3-175B

512

2048

2

2048

4

8

1

6

850

915

133

LLAMA3-8B

8

128

1

8192

1

1

2

1

14064

814

8

LLAMA3-70B

64

128

1

8192

4

4

2

5

1633

786

69

LLAMA3-405B

576

252

1

8192

8

9

2

7

312

827

362

Nemotron-8B

64

256

4

4096

2

1

1

1

13003

668

9

Nemotron-15B

64

256

4

4096

4

1

1

1

7550

710

15

Nemotron-22B

64

256

2

4096

2

4

1

10

5831

759

19

Nemotron-340B

128

32

1

4096

8

8

1

12

367

773

308

Fine-Tuning#

The table below presents the fine-tuning performance of LLaMA2 models using Supervised Fine-Tuning (SFT) and Low-Rank Adaptors (LoRA) at FP8 precision (using NeMo 2.0).

For fine-tuning, we use the SQuAD-v1.1 dataset, with inputs packed to 4096 tokens.

Model

Task

#-GPUs

GBS

MBS

Packed Sequence Length

TP

PP

VP

Tokens / sec / GPU

Model TFLOP / sec / GPU

Est. time to complete in mins (10M tokens)

LLAMA3-8B

SFT

8

32

1

4096

1

1

1

16891

763

1.23

LLAMA3-70B

SFT

32

32

1

4096

4

4

5

1672

697

3.12

LLAMA3-8B

LoRA

8

32

1

4096

1

1

1

23406

707

0.89

LLAMA3-70B

LoRA

8

32

1

4096

2

4

20

2758

768

7.55

LLAMA3-405B

LoRA

24

24

1

2048

4

6

7

509

827

13.63