NeMo Customizer Microservice Deployment Guide#
NeMo Customizer is as a lightweight API server to run managed training jobs on GPU nodes using Volcano scheduler.
Prerequisites#
Before installing NeMo Customizer, make sure that you have all of the following:
Minimum System Requirements
- A single-node Kubernetes cluster on a Linux host and cluster-admin level permissions. 
- At least 200 GB of free disk space. 
- At least one dedicated GPUs (A100 80 GB or H100 80 GB) 
Storage
- Access to an external PostgreSQL Database to store model customization objects. 
- Access to an NFS-backed Persistent Volume that supports - ReadWriteManyaccess mode to enable fast checkpointing and minimize network traffic.
Kubernetes
- A dedicated namespace. 
- Secrets assigned to that namespace for all of the following: - NGC Image pull credentials: Required to download the images. 
- Database credentials: Required for production database protection. 
 
- An available - StorageClassfor the NeMo Data Store.
- NVIDIA Network Operator: Simplifies the provisioning and management of NVIDIA networking resources in a Kubernetes cluster. 
- Reviewed Tenant Configuration Options. 
Values Setup for Installing NeMo Customizer#
If you want to install NeMo Customizer as a standalone microservice, you need to configure the following value overrides in the values.yaml file.
tags:
  platform: false
  customizer: true
NeMo Customizer requires the following NeMo microservices installed:
Multi-node Training#
To enable multi-node training on cloud providers, install Kyverno as a dependency.
- Add Kyverno to your helm repository. 
helm repo add kyverno https://kyverno.github.io/kyverno/
helm repo update
- Install Kyverno. 
helm upgrade -i kyverno kyverno/kyverno -n kyverno --create-namespace --version 3.1.5
Multi-node training on AWS with EFA#
- Define your initial - values.yamlfile.
- Install NeMo Customizer with the - awsDeploy.enabled=true:- helm --namespace nemo-customizer install nemo-customizer \ nemo-microservices-helm-chart \ -f <path-to-your-values-file> \ --set awsDeploy.enabled=true 
Multi-node training on Azure#
- Define your initial - values.yamlfile.
- Install NeMo Customizer with the - azureDeploy.enabled=true:- helm --namespace nemo-customizer install nemo-customizer \ nemo-microservices-helm-chart \ -f <path-to-your-values-file> \ --set azureDeploy.enabled=true 
Multi-node training on GCP#
- Install the NeMo platform Helm chart with GCP-specific configurations: - helm --namespace default install \ nemo nmp/nemo-microservices-helm-chart \ --set tags.platform=false \ --set tags.customizer=true \ --set gcpDeploy.enabled=true \ --set customizer.customizerConfigs.training.pvc.storageClass=<YOUR_STORAGE_CLASS> - Note - Ensure that NIM inference image tag is above 1.8.3. If you use NIM image tag <= 1.8.3, you also need to provide the following env variable to nim: - LD_LIBRARY_PATH=/usr/local/nvidia/lib64.- helm --namespace default install \ nemo nmp/nemo-microservices-helm-chart \ --set tags.platform=false \ --set tags.customizer=true \ --set gcpDeploy.enabled=true \ --set nim.env[0].name=NIM_PEFT_SOURCE \ --set nim.env[0].value=http://nemo-entity-store:8000 \ --set nim.env[1].name=NIM_PEFT_REFRESH_INTERVAL \ --set nim.env[1].value="30" \ --set nim.env[2].name=NIM_MAX_CPU_LORAS \ --set nim.env[2].value="16" \ --set nim.env[3].name=NIM_MAX_GPU_LORAS \ --set nim.env[3].value="8" \ --set nim.env[4].name=LD_LIBRARY_PATH \ --set nim.env[4].value=/usr/local/nvidia/lib64 \ --set customizer.customizerConfigs.training.pvc.storageClass=<YOUR_STORAGE_CLASS> - You can also create a - gcp-values.yamlfile with the following configuration:- tags: platform: false customizer: true gcpDeploy: enabled: true customizer: customizerConfigs: training: pvc: # Replace <YOUR_STORAGE_CLASS> with an appropriate value storageClass: <YOUR_STORAGE_CLASS> - Then install using: - helm --namespace default install \ nemo nmp/nemo-microservices-helm-chart \ -f gcp-values.yaml - Note - Replace - <YOUR_STORAGE_CLASS>with your actual GCP storage class name, such as- standard-rwoor- premium-rwo.
Multi-node training on OCI#
- Define your initial - values.yamlfile.
- Install NeMo Customizer with the - ociDeploy.enabled=true:- helm --namespace nemo-customizer install nemo-customizer \ nemo-microservices-helm-chart \ -f <path-to-your-values-file> \ --set ociDeploy.enabled=true 
Support Matrix#
| Cloud Provider | High-Performance Networking | Details | Tested Environment | 
|---|---|---|---|
| AWS | EFA | Managed through Kyverno | p5.48xlarge, EFA-supported GPU instances | 
| Azure | InfiniBand (RDMA) | Managed through Kyverno | Standard_ND96amsr_A100_v4 | 
| GCP | TCP-X, TCP-XO | Managed through Kyverno | a3-megagpu-8g with NVIDIA H100 80GB MEGA | 
| OCI | RDMA (RoCE) | Managed through Kyverno | BM.GPU.A100 | 
Verifying policy setup#
To check Kyverno policy application:
kubectl get policy
kubectl describe policy customizer-eks-efa-configs  # For AWS
kubectl describe policy customizer-azure-rdma-nccl-configs  # For Azure
kubectl describe policy customizer-gcp-tcpxo-nccl-configs  # For Azure
kubectl describe policy customizer-oci-rdma-nccl-configs # For OCI
Configure Features#
NeMo Customizer utilizes several services that you can deploy independently or test with default subcharts and values.
Queue Executor#
You have two options for the queue executor: Volano and Run:AI.
Volcano#
Install Volcano#
Install Volcano scheduler before installing the chart:
- Install Volcano scheduler: - kubectl apply -f https://raw.githubusercontent.com/volcano-sh/volcano/v1.9.0/installer/volcano-development.yaml 
- Install the NeMo platform Helm chart: - helm --namespace default install \ nemo nmp/nemo-microservices-helm-chart --set tags.platform=false --set tags.customizer=true 
For GCP deployments, you must configure additional settings after installing Volcano:
- Install Volcano scheduler: - kubectl apply -f https://raw.githubusercontent.com/volcano-sh/volcano/v1.9.0/installer/volcano-development.yaml 
- Install ResourceQuota for critical pods: - kubectl apply -f - <<EOF apiVersion: v1 kind: ResourceQuota metadata: name: critical-pods namespace: volcano-system spec: hard: pods: "100" scopeSelector: matchExpressions: - operator: In scopeName: PriorityClass values: - system-node-critical - system-cluster-critical EOF 
- Wait for Volcano to create the “default” queue (5-10 minutes): - kubectl get queue-v1beta1 
Customize Volcano Queue#
In your custom values file for the NeMo Microservices Helm Chart, you can configure a Volcano queue for NeMo Customizer training jobs. The queue must have gpu and mlnxnics capabilities to schedule training jobs.
Tip
For more information about the Volcano queue, refer to Queue in the Volcano documentation.
The NeMo Microservices Helm Chart has default values for setting up a default Volcano queue. Set up the Volcano configuration values as follows:
- If you want to use the default queue pre-configured in the chart, set - volcano: enabled: trueand keep- customizer.customizerConfig.training.queueset to- "default".
- If you want to use your own Volcano queue, set - volcano: enabled: falseand specify the Volcano queue name to- customizer.customizerConfig.training.queue.
Run:AI#
Alternatively, you can use Run:AI as the queue and executor for NeMo Customizer.
To configure NeMo Customizer to use the Run:AI executor, add the following manifest snippet to your custom values file:  customizer.runai.override.values.yaml.
This sample manifest is for cases where you use the NeMo Microservices Helm Chart.
Adapt your custom values files accordingly if you want to install the microservices individually.
Weights & Biases in Run:AI#
If configuring Weights & Biases, you need to update the following with your keys in the customizer.runai.override.values.yaml file:
customizer:
  customizerConfig:
    training:
      container_defaults:
        env:
          - name: WANDB_API_KEY
            value: 'xxx'
          - name: WANDB_ENCRYPTED_API_KEY
            value: 'xxx'
          - name: WANDB_ENCRYPTION_KEY
            value: 'xxx'
Note
For configuring Weights & Biases while using Volcano, refer to the Metrics tutorial
MLflow#
You can configure NeMo Customizer to use MLflow to monitor training jobs. You need to deploy MLflow and set up the connection with the NeMo Customizer microservice.
- Create a - mlflow.values.yamlfile.- postgresql: enabled: true auth: username: "bn_mlflow" password: "bn_mlflow" tracking: enabled: true auth: enabled: false runUpgradeDB: false service: type: ClusterIP resourcesPreset: medium run: enabled: false 
- Install MLflow using - helm.- helm install -n mlflow-system --create-namespace mlflow oci://registry-1.docker.io/bitnamicharts/mlflow --version 1.0.6 -f mlflow.values.yaml 
- Integrate NeMo Customizer with MLflow by setting - customizerConfig.mlflowURLin- values.yaml.- customizerConfig: # mlflowURL is the internal K8s DNS record for the mlflow service. # Example: "http://mlflow-tracking.mlflow-system.svc.cluster.local:80" mlflowURL: "" 
WandB#
You can customize WandB configuration for NeMo Customizer to log data under specific team or project as follows.
customizerConfig:
  # -- Weights and Biases (WandB) Python SDK intialization configuration for logging and monitoring training jobs in WandB.
  wandb:
  # -- The username or team name under which the runs will be logged.
  # -- If not specified, the run will default to a default entity set in the account settings.
  # -- To change the default entity, go to the account settings https://wandb.ai/settings
  # -- and update the “Default location to create new projects” under “Default team”.
  # -- Reference: https://docs.wandb.ai/ref/python/init/
  entity: null
  # The name of the project under which this run will be logged
  project: "nvidia-nemo-customizer"