VehicleMakeNet
The model described in this card is a classification network which aims to classify car images into 20 popular car makes. This model classifies the following cars:
Acura
Audi
BMW
Chevrolet
Chrysler
Dodge
Ford
GMC
Honda
Hyundai
Infiniti
Jeep
Kia
Lexus
Mazda
Mercedes
Nissan
Subaru
Toyota
Volkswagen
This is a classification model with a Resnet18 backbone.
The training algorithm optimizes the network to minimize the categorical cross entropy loss for the classes. This model was trained using the Image Classification training app in TAO Toolkit v3.0. The training is carried out in two phases. In the first phase, the network is trained with regularization to facilitate pruning. Following the first phase, we prune the network removing channels whose kernel norms are below the pruning threshold. In the second phase the pruned network is retrained.
VehicleMakeNet is generally cascaded with DashCamNet or TrafficCamNet for smart city applications. For example, DashCamNet or TrafficCamNet acts as a primary detector, detecting the objects of interest and for each detected car the VehicleMakeNet acts as a secondary classifier determining the make of the car. Businesses such as smart parking or gas stations can use the insights of the make of vehicles to understand their customers.
The datasheet for the model is captured in it’s model card hosted at NGC.