TAO v5.5.0
NVIDIA TAO v5.5.0

Segformer with TAO Deploy

Segformer ONNX file generated from tao export is taken as an input to tao-deploy to generate optimized TensorRT engine. We do not support Int8 precision for Segformer.

Same spec file can be used as the tao model segformer export command.

trt_config

The gen_trt_engine parameter defines TensorRT engine generation.

Copy
Copied!
            

gen_trt_engine: onnx_file: /path/to/onnx_file trt_engine: /path/to/trt_engine input_width: 512 input_height: 512 tensorrt: data_type: FP32 workspace_size: 1024 min_batch_size: 1 opt_batch_size: 1 max_batch_size: 1

Parameter Datatype Default Description Supported Values
onnx_file string The precision to be used for the TensorRT engine
trt_engine string The maximum workspace size for the TensorRT engine
input_channel unsigned int 3 The input channel size. Only the value 3 is supported. 3
input_width unsigned int 960 The input width >0
input_height unsigned int 544 The input height >0
batch_size unsigned int -1 The batch size of the ONNX model >=-1

tensorrt

The tensorrt parameter defines TensorRT engine generation.

Parameter Datatype Default Description Supported Values
data_type string fp32 The precision to be used for the TensorRT engine fp32/fp16
workspace_size unsigned int 1024 The maximum workspace size for the TensorRT engine >1024
min_batch_size unsigned int 1 The minimum batch size used for the optimization profile shape >0
opt_batch_size unsigned int 1 The optimal batch size used for the optimization profile shape >0
max_batch_size unsigned int 1 The maximum batch size used for the optimization profile shape >0

Use the following command to run Segformer engine generation:

Copy
Copied!
            

tao deploy segformer gen_trt_engine -e /path/to/spec.yaml \ results_dir=/path/to/results \ gen_trt_engine.onnx_file=/path/to/onnx/file \ gen_trt_engine.trt_engine=/path/to/engine/file \ gen_trt_engine.tensorrt.data_type=<data_type>

Required Arguments

  • -e, --experiment_spec: The experiment spec file to set up TensorRT engine generation

Optional Arguments

  • results_dir: The directory where the JSON status-log file will be dumped

  • gen_trt_engine.onnx_file: The .onnx model to be converted

  • gen_trt_engine.trt_engine: The path where the generated engine will be stored

  • gen_trt_engine.tensorrt.data_type: The precision to be exported

Sample Usage

Here’s an example of using the gen_trt_engine command to generate an FP16 TensorRT engine:

Copy
Copied!
            

tao deploy segformer gen_trt_engine -e $DEFAULT_SPEC gen_trt_engine.onnx_file=$ONNX_FILE \ gen_trt_engine.trt_engine=$ENGINE_FILE \ gen_trt_engine.tensorrt.data_type=FP16

Same spec file as TAO evaluation/ inference spec file. Sample spec file:

Copy
Copied!
            

model: input_height: 512 input_width: 512 backbone: type: "mit_b1" dataset: img_norm_cfg: mean: - 127.5 - 127.5 - 127.5 std: - 127.5 - 127.5 - 127.5 test_dataset: img_dir: /data/images/val ann_dir: /data/masks/val input_type: "grayscale" data_root: /tlt-pytorch palette: - seg_class: foreground rgb: - 0 - 0 - 0 label_id: 0 mapping_class: foreground - seg_class: background rgb: - 255 - 255 - 255 label_id: 1 mapping_class: background batch_size: 1 workers_per_gpu: 1

Use the following command to run Segformer engine evaluation:

Copy
Copied!
            

tao deploy segformer evaluate -e /path/to/spec.yaml \ results_dir=/path/to/results \ evaluate.trt_engine=/path/to/engine/file

Required Arguments

  • -e, --experiment_spec: The experiment spec file for evaluation This should be the same as the tao evaluate spec file

Optional Arguments

  • results_dir: The directory where the evaluat file and evaluation results will be dumped

  • evaluate.trt_engine: The engine file for evaluation

Sample Usage

Here’s an example of using the evaluate command to run evaluation with a TensorRT engine:

Copy
Copied!
            

tao deploy segformer evaluate -e $DEFAULT_SPEC results_dir=$RESULTS_DIR \ evaluate.trt_engine=$ENGINE_FILE

Use the following command to run SegFormer engine inference:

Copy
Copied!
            

tao deploy segformer inference -e /path/to/spec.yaml \ results_dir=/path/to/results \ inference.trt_engine=/path/to/engine/file

Required Arguments

  • -e, --experiment_spec: The experiment spec file for inference. This should be the same as the tao inference spec file.

Optional Arguments

  • results_dir: The directory where JSON status-log file and inference results will be dumped

  • inference.trt_engine: The engine file for inference

Sample Usage

For inference, you can re-use the spec config mentioned under running_evaluation_through_tensorrt_engine. Here’s an example of using the inference command to run inference with a TensorRT engine:

Copy
Copied!
            

tao deploy segformer inference -e $DEFAULT_SPEC results_dir=$RESULTS_DIR \ inference.trt_engine=$ENGINE_FILE

The mask overlaid visualization will be stored under $RESULTS_DIR/vis_overlay and raw predictions in mask format will be stored under $RESULTS_DIR/mask_labels.

Previous SSD with TAO Deploy
Next UNet with TAO Deploy
© Copyright 2024, NVIDIA. Last updated on Aug 30, 2024.