TAO v5.5.0
NVIDIA TAO v5.5.0

CenterPose with TAO Deploy

To generate an optimized TensorRT engine:

  1. Generate a CenterPose .onnx file using tao model centerpose export.

  2. Specify the .onnx file as the input to tao deploy centerpose gen_trt_engine.

For more information about training a CenterPose model, refer to the CenterPose training documentation.

To convert the .onnx file, you can reuse the spec file from the tao model centerpose export command.

gen_trt_engine

The gen_trt_engine parameter defines TensorRT engine generation.

Copy
Copied!
            

gen_trt_engine: onnx_file: /path/to/onnx_file trt_engine: /path/to/trt_engine input_channel: 3 input_width: 512 input_height: 512 tensorrt: data_type: fp32 workspace_size: 1024 min_batch_size: 1 opt_batch_size: 2 max_batch_size: 4 calibration: cal_image_dir: /path/to/cal/images cal_cache_file: /path/to/cal.bin cal_batch_size: 10 cal_batches: 1000

Parameter Datatype Default Description Supported Values
onnx_file string The precision to be used for the TensorRT engine
trt_engine string The maximum workspace size for the TensorRT engine
input_channel unsigned int 3 The input channel size. Only the value 3 is supported. 3
input_width unsigned int 512 The input width >0
input_height unsigned int 512 The input height >0
batch_size unsigned int -1 The batch size of the ONNX model >=-1

tensorrt

The tensorrt parameter defines TensorRT engine generation.

Parameter Datatype Default Description Supported Values
data_type string fp32 The precision to be used for the TensorRT engine fp32/fp16/int8
workspace_size unsigned int 1024 The maximum workspace size for the TensorRT engine >1024
min_batch_size unsigned int 1 The minimum batch size used for the optimization profile shape >0
opt_batch_size unsigned int 1 The optimal batch size used for the optimization profile shape >0
max_batch_size unsigned int 1 The maximum batch size used for the optimization profile shape >0

calibration

The calibration parameter defines TensorRT engine generation with PTQ INT8 calibration.

Parameter Datatype Default Description Supported Values
cal_image_dir string The list of paths that contain images used for calibration
cal_cache_file string The path to the calibration cache file to be dumped
cal_batch_size unsigned int 1 The batch size per batch during calibration >0
cal_batches unsigned int 1 The number of batches to calibrate >0

Use the following command to run CenterPose engine generation:

Copy
Copied!
            

tao deploy centerpose gen_trt_engine -e /path/to/spec.yaml \ results_dir=/path/to/results \ gen_trt_engine.onnx_file=/path/to/onnx/file \ gen_trt_engine.trt_engine=/path/to/engine/file \ gen_trt_engine.tensorrt.data_type=<data_type>

Required Arguments

  • -e, --experiment_spec: The experiment spec file to set up TensorRT engine generation.

Optional Arguments

  • results_dir: The directory where the JSON status-log file is saved.

  • gen_trt_engine.onnx_file: The .onnx model to be converted.

  • gen_trt_engine.trt_engine: The path where the generated engine is stored.

  • gen_trt_engine.tensorrt.data_type: The precision to be exported.

Sample Usage

The following is an example of using the gen_trt_engine command to generate an FP16 TensorRT engine:

Copy
Copied!
            

tao deploy centerpose gen_trt_engine -e $DEFAULT_SPEC gen_trt_engine.onnx_file=$ONNX_FILE \ gen_trt_engine.trt_engine=$ENGINE_FILE \ gen_trt_engine.tensorrt.data_type=FP16

You can reuse the TAO evaluation spec file for evaluation through a TensorRT engine. The following is a sample spec file:

Copy
Copied!
            

evaluate: trt_engine: /path/to/engine/file opencv: False eval_num_symmetry: 1 results_dir: /path/to/save/results dataset: test_data: /path/to/testing/images/and/json/files batch_size: 2 workers: 4

Use the following command to run CenterPose engine evaluation:

Copy
Copied!
            

tao deploy centerpose evaluate -e /path/to/spec.yaml \ results_dir=/path/to/results \ evaluate.trt_engine=/path/to/engine/file

Required Arguments

  • -e, --experiment_spec: The experiment spec file for evaluation. This must be the same as the tao evaluate spec file.

Optional Arguments

  • results_dir: The directory where the JSON status-log file and evaluation results are saved.

  • evaluate.trt_engine: The engine file for evaluation.

Sample Usage

The following is an example of using the evaluate command to run evaluation with a TensorRT engine:

Copy
Copied!
            

tao deploy centerpose evaluate -e $DEFAULT_SPEC results_dir=$RESULTS_DIR \ evaluate.trt_engine=$ENGINE_FILE

You can reuse the TAO inference spec file for inference through a TensorRT engine. The following is a sample spec file:

Copy
Copied!
            

inference: trt_engine: /path/to/engine/file visualization_threshold: 0.3 principle_point_x: 298.3 principle_point_y: 392.1 focal_length_x: 651.2 focal_length_y: 651.2 skew: 0.0 axis_size: 0.5 use_pnp: True save_json: True save_visualization: True opencv: True dataset: inference_data: /path/to/inference/files batch_size: 1 workers: 4

Use the following command to run CenterPose engine inference:

Copy
Copied!
            

tao deploy centerpose inference -e /path/to/spec.yaml \ results_dir=/path/to/results \ inference.trt_engine=/path/to/engine/file

Required Arguments

  • -e, --experiment_spec: The experiment spec file for inference. This should be the same as the tao inference spec file.

Optional Arguments

  • results_dir: The directory where the JSON status-log file and inference results are saved.

  • inference.trt_engine: The engine file for inference.

Sample Usage

The following is an example of using the inference command to run inference with a TensorRT engine:

Copy
Copied!
            

tao deploy centerpose inference -e $DEFAULT_SPEC results_dir=$RESULTS_DIR \ evaluate.trt_engine=$ENGINE_FILE

The visualization results are stored in $RESULTS_DIR.

Previous TAO Deploy Installation
Next Classification (PyTorch) with TAO Deploy
© Copyright 2024, NVIDIA. Last updated on Aug 30, 2024.