DINO with TAO Deploy#
To generate an optimized TensorRT engine, a DINO .onnx
file, which is first generated using tao model dino export
,
is taken as an input to tao deploy dino gen_trt_engine
. For more information about training a DINO model,
refer to the DINO training documentation.
Converting .onnx File into TensorRT Engine#
SPECS=$(tao-client dino get-spec --action gen_trt_engine --job_type experiment --id $EXPERIMENT_ID)
See also
For information on how to create an experiment using the remote client, refer to the Creating an experiment section in the Remote Client documentation.
To convert the .onnx
file, you can reuse the spec file from the tao model dino export
command.
The gen_trt_engine
parameter defines TensorRT engine generation.
gen_trt_engine:
onnx_file: /path/to/onnx_file
trt_engine: /path/to/trt_engine
input_channel: 3
input_width: 960
input_height: 544
tensorrt:
data_type: int8
workspace_size: 1024
min_batch_size: 1
opt_batch_size: 10
max_batch_size: 10
calibration:
cal_image_dir:
- /path/to/cal/images
cal_cache_file: /path/to/cal.bin
cal_batch_size: 10
cal_batches: 1000
Parameter |
Datatype |
Default |
Description |
Supported Values |
|
string |
The precision to be used for the TensorRT engine |
||
|
string |
The maximum workspace size for the TensorRT engine |
||
|
unsigned int |
3 |
The input channel size. Only the value 3 is supported. |
3 |
|
unsigned int |
960 |
The input width |
>0 |
|
unsigned int |
544 |
The input height |
>0 |
|
unsigned int |
-1 |
The batch size of the ONNX model |
>=-1 |
tensorrt#
The tensorrt
parameter defines TensorRT engine generation.
Parameter |
Datatype |
Default |
Description |
Supported Values |
|
string |
fp32 |
The precision to be used for the TensorRT engine |
fp32/fp16/int8 |
|
unsigned int |
1024 |
The maximum workspace size for the TensorRT engine |
>1024 |
|
unsigned int |
1 |
The minimum batch size used for the optimization profile shape |
>0 |
|
unsigned int |
1 |
The optimal batch size used for the optimization profile shape |
>0 |
|
unsigned int |
1 |
The maximum batch size used for the optimization profile shape |
>0 |
calibration#
The calibration
parameter defines TensorRT engine generation with PTQ INT8 calibration.
Parameter |
Datatype |
Default |
Description |
Supported Values |
|
string list |
The list of paths that contain images used for calibration |
||
|
string |
The path to the calibration cache file to be dumped |
||
|
unsigned int |
1 |
The batch size per batch during calibration |
>0 |
|
unsigned int |
1 |
The number of batches to calibrate |
>0 |
Use the following command to run DINO engine generation:
GEN_TRT_ENGINE_JOB_ID=$(tao-client dino experiment-run-action --action gen_trt_engine --id $EXPERIMENT_ID --specs "$SPECS")
See also
For information on how to create an experiment using the remote client, refer to the Creating an experiment section in the Remote Client documentation.
tao deploy dino gen_trt_engine -e /path/to/spec.yaml \
results_dir=/path/to/results \
gen_trt_engine.onnx_file=/path/to/onnx/file \
gen_trt_engine.trt_engine=/path/to/engine/file \
gen_trt_engine.tensorrt.data_type=<data_type>
Required Arguments
-e, --experiment_spec
: The experiment spec file to set up TensorRT engine generation
Optional Arguments
results_dir
: The directory where the JSON status-log file will be dumpedgen_trt_engine.onnx_file
: The.onnx
model to be convertedgen_trt_engine.trt_engine
: The path where the generated engine will be storedgen_trt_engine.tensorrt.data_type
: The precision to be exported
Sample Usage
Here’s an example of using the gen_trt_engine
command to generate an FP16 TensorRT engine:
tao deploy dino gen_trt_engine -e $DEFAULT_SPEC
gen_trt_engine.onnx_file=$ONNX_FILE \
gen_trt_engine.trt_engine=$ENGINE_FILE \
gen_trt_engine.tensorrt.data_type=FP16
Running Evaluation through a TensorRT Engine#
You can reuse the TAO evaluation spec file for evaluation through a TensorRT engine. The following is a sample spec file:
evaluate:
trt_engine: /path/to/engine/file
conf_threshold: 0.0
input_width: 960
input_height: 544
dataset:
test_data_sources:
image_dir: /data/raw-data/val2017/
json_file: /data/raw-data/annotations/instances_val2017.json
num_classes: 91
batch_size: 8
Use the following command to run DINO engine evaluation:
EVAL_JOB_ID=$(tao-client dino experiment-run-action --action evaluate --id $EXPERIMENT_ID --parent_job_id $GEN_TRT_ENGINE_JOB_ID --specs "$SPECS")
See also
For information on how to create an experiment using the remote client, refer to the Creating an experiment section in the Remote Client documentation.
tao deploy dino evaluate -e /path/to/spec.yaml \
results_dir=/path/to/results \
evaluate.trt_engine=/path/to/engine/file
Required Arguments
-e, --experiment_spec
: The experiment spec file for evaluation
This should be the same as the tao evaluate
spec file
Optional Arguments
results_dir
: The directory where the JSON status-log file and evaluation results will be dumpedevaluate.trt_engine
: The engine file for evaluation
Sample Usage
Here’s an example of using the evaluate
command to run evaluation with a TensorRT engine:
tao deploy dino evaluate -e $DEFAULT_SPEC
results_dir=$RESULTS_DIR \
evaluate.trt_engine=$ENGINE_FILE
Running Inference through a TensorRT Engine#
You can reuse the TAO inference spec file for inference through a TensorRT engine. The following is a sample spec file:
inference:
conf_threshold: 0.5
input_width: 960
input_height: 544
trt_engine: /path/to/engine/file
color_map:
person: green
car: red
cat: blue
dataset:
infer_data_sources:
image_dir: /data/raw-data/val2017/
classmap: /path/to/coco/annotations/coco_classmap.txt
num_classes: 91
batch_size: 8
Use the following command to run DINO engine inference:
INFERENCE_JOB_ID=$(tao-client dino experiment-run-action --action inference --id $EXPERIMENT_ID --parent_job_id $GEN_TRT_ENGINE_JOB_ID --specs "$SPECS")
See also
For information on how to create an experiment using the remote client, refer to the Creating an experiment section in the Remote Client documentation.
tao deploy dino inference -e /path/to/spec.yaml \
results_dir=/path/to/results \
inference.trt_engine=/path/to/engine/file
Required Arguments
-e, --experiment_spec
: The experiment spec file for inference.
This should be the same as the tao inference
spec file.
Optional Arguments
results_dir
: The directory where JSON status-log file and inference results will be dumpedinference.trt_engine
: The engine file for inference
Sample Usage
Here’s an example of using the inference
command to run inference with a TensorRT engine:
tao deploy dino inference -e $DEFAULT_SPEC
results_dir=$RESULTS_DIR \
evaluate.trt_engine=$ENGINE_FILE
The visualization will be stored in $RESULTS_DIR/images_annotated
, and the KITTI format predictions will be stored
under $RESULTS_DIR/labels
.