Running TAO via Python Wheels#
You can run TAO on a bare-metal system without Docker or K8s by using Python wheels that contain standalone implementations of the DNN functionality, pre-built and packaged into TAO containers.
This table maps each TAO wheel to its container and captures any exceptions associated with these wheels.
Wheel Name |
Container Mapping |
Networks Supported |
---|---|---|
nvidia-tao-pytorch
|
nvcr.io/nvidia/tao/tao-toolkit:6.0.0-pytorch
|
* action_recognition
* centerpose
* classification_pyt
* deformable_detr
* dino
* grounding_dino
* mask_grounding_dino
* mask2former
* mal
* mae
* ml_recog
* nvdinov2
* ocdnet
* ocrnet
* optical_inspection
* pointpillars
* pose_classification
* re_identification
* rtdetr
* segformer
* stylegan_xl
* visual_changenet
|
nvidia-tao-deploy
|
nvcr.io/nvidia/tao/tao-toolkit:6.0.0-deploy
|
* centerpose
* classification_pyt
* classification_tf1
* classification_tf2
* deformable_detr
* detectnet_v2
* dino
* dssd
* grounding_dino
* efficientdet_tf1
* efficientdet_tf2
* faster_rcnn
* lprnet
* mae
* mask_rcnn
* mask2former
* mask_grounding_dino
* ml_recog
* multitask_classification
* nvdinov2
* ocdnet
* ocrnet
* optical_inspection
* rtdetr
* retinanet
* segformer
* ssd
* trtexec
* unet
* yolo_v3
* yolo_v4
* yolo_v4_tiny
|
Installing nvidia_tao_deploy
Locally#
This section details how to install the nvidia_tao_deploy
wheel locally.
Install the following Python pip dependencies:
python3 -m pip install --upgrade pip python3 -m pip install Cython==0.29.36 python3 -m pip install nvidia-ml-py python3 -m pip install nvidia-pyindex python3 -m pip install --upgrade setuptools python3 -m pip install pycuda==2020.1 python3 -m pip install nvidia-eff-tao-encryption python3 -m pip install nvidia-eff python3 -m pip install cffi
Set up
openMPI
andmpi4py
:sudo apt-get install libopenmpi-dev -y python3 -m pip install mpi4py
Install the
nvidia_tao_deploy
wheel:python3 -m pip install nvidia-tao-deploy
Installing nvidia_tao_pytorch
Locally#
The nvidia-tao-pytorch
wheel has several third-party dependencies, which can be cumbersome to install.
To build the installation, refer to the steps on the GitHub page for the setup_env_desktop.sh script: