TAO v5.5.0
NVIDIA TAO v5.5.0

ReIdentificationNet

ReIdentificationNet takes cropped images of a person from different perspectives as network input and outputs the embedding features for that person. The embeddings are used to perform similarity matching to re-identify the same person. The model supported in the current version is based on ResNet, which is the most commonly used baseline for re-identification due to its high accuracy.

The expected time to train ReIdentificationNet is as follows:

Backbone Type

GPU Type

No. of training images

Image Size

No. of identities

Batch size

Total Epochs

Total Training Time

Resnet50 1 x Nvidia A100 - 80GB PCIE 13,000 256x128x3 751 128 120 ~1.25 hours
Resnet50 1 x Nvidia Quadro GV100 - 32GB 13,000 256x128x3 751 64 120 ~2.5 hours

The ReIdentificationNet apps in TAO expect data in Market-1501 format for training and evaluation.

See the Data Annotation Format page for more information about the Market-1501 data format.

The spec file for ReIdentificationNet includes model, dataset, re_ranking, and train parameters. Here is an example spec for training a ResNet model on Market-1501 that contains 751 identities in the training set.

Copy
Copied!
            

results_dir: "/path/to/experiment_results" encryption_key: nvidia_tao model: backbone: resnet_50 last_stride: 1 pretrain_choice: imagenet pretrained_model_path: "/path/to/pretrained_model.pth" input_channels: 3 input_width: 128 input_height: 256 neck: bnneck feat_dim: 256 neck_feat: after metric_loss_type: triplet with_center_loss: False with_flip_feature: False label_smooth: True dataset: train_dataset_dir: "/path/to/train_dataset_dir" test_dataset_dir: "/path/to/test_dataset_dir" query_dataset_dir: "/path/to/query_dataset_dir" num_classes: 751 batch_size: 64 val_batch_size: 128 num_workers: 1 pixel_mean: [0.485, 0.456, 0.406] pixel_std: [0.226, 0.226, 0.226] padding: 10 prob: 0.5 re_prob: 0.5 sampler: softmax_triplet num_instances: 4 re_ranking: re_ranking: True k1: 20 k2: 6 lambda_value: 0.3 train: results_dir: "${results_dir}/train" optim: name: Adam lr_monitor: val_loss steps: [40, 70] gamma: 0.1 bias_lr_factor: 1 weight_decay: 0.0005 weight_decay_bias: 0.0005 warmup_factor: 0.01 warmup_iters: 10 warmup_method: linear base_lr: 0.00035 momentum: 0.9 center_loss_weight: 0.0005 center_lr: 0.5 triplet_loss_margin: 0.3 num_epochs: 10 checkpoint_interval: 5 validation_interval: 5 seed: 1234

Parameter Data Type Default Description Supported Values
model dict config The configuration of the model architecture
dataset dict config The configuration of the dataset
train dict config The configuration of the training task
evaluate dict config The configuration of the evaluation task
inference dict config The configuration of the inference task
encryption_key string None The encryption key to encrypt and decrypt model files
results_dir string /results The directory where experiment results are saved
export dict config The configuration of the ONNX export task
re_ranking dict config The configuration for the re-ranking module

model

The model parameter provides options to change the ReIdentificationNet architecture.

Copy
Copied!
            

model: backbone: resnet_50 last_stride: 1 pretrain_choice: imagenet pretrained_model_path: "/path/to/pretrained_model.pth" input_channels: 3 input_width: 128 input_height: 256 neck: bnneck feat_dim: 256 neck_feat: after metric_loss_type: triplet with_center_loss: False with_flip_feature: False label_smooth: True

Parameter Datatype Default Description Supported Values
backbone string resnet_50 The type of model, which can be resnet_50 or a Swin-based architecture (refer to ReIdentificationNet Transformer for more details) “resnet_50”, “swin_base_patch4_window7_224”, “swin_small_patch4_window7_224, “swin_tiny_patch4_window7_224”
last_stride unsigned int 1 The number of strides during convolution >0
pretrain_choice string imagenet The pre-trained network imagenet/self/””
pretrained_model_path string The path to the pre-trained model
input_channels unsigned int 3 The number of input channels >0
input_width int 128 The width of the input images >0
input_height int 256 The height of the input images >0
neck string bnneck Specifies whether to train with BNNeck bnneck/””
feat_dim unsigned int 256 The output size of the feature embeddings >0
neck_feat string after Specifies which feature of BNNeck to use for testing before/after
metric_loss_type string triplet The type of metric loss triplet/center/triplet_center
with_center_loss bool False Specifies whether to enable center loss True/False
with_flip_feature bool False Specifies whether to enable image flipping True/False
label_smooth bool True Specifies whether to enable label smoothing True/False

dataset

The dataset parameter defines the dataset source, training batch size, and augmentation.

Copy
Copied!
            

dataset: train_dataset_dir: "/path/to/train_dataset_dir" test_dataset_dir: "/path/to/test_dataset_dir" query_dataset_dir: "/path/to/query_dataset_dir" num_classes: 751 batch_size: 64 val_batch_size: 128 num_workers: 1 pixel_mean: [0.485, 0.456, 0.406] pixel_std: [0.226, 0.226, 0.226] padding: 10 prob: 0.5 re_prob: 0.5 sampler: softmax_triplet num_instances: 4

Parameter Datatype Default Description Supported Values
train_dataset_dir string The path to the train images
test_dataset_dir string The path to the test images
query_dataset_dir string The path to the query images
num_classes unsigned int 751 The number of unique person IDs >0
batch_size unsigned int 64 The batch size for training >0
val_batch_size unsigned int 128 The batch size for validation >0
num_workers unsigned int 1 The number of parallel workers processing data >0
pixel_mean float list [0.485, 0.456, 0.406] The pixel mean for image normalization float list
pixel_std float list [0.226, 0.226, 0.226] The pixel standard deviation for image normalization float list
padding unsigned int 10 The pixel padding size around images for image augmentation >=1
prob float 0.5 The random horizontal flipping probability for image augmentation >0
re_prob float 0.5 The random erasing probability for image augmentation >0
sampler string softmax_triplet The type of sampler for data loading softmax/triplet/softmax_triplet
num_instances unsigned int 4 The number of image instances of the same person in a batch >0

re_ranking

The re_ranking parameter defines the settings for the re-ranking module.

Copy
Copied!
            

re_ranking: re_ranking: True k1: 20 k2: 6 lambda_value: 0.3

Parameter Datatype Default Description Supported Values
re_ranking bool True A flag that enables the re-ranking module True/False
k1 unsigned int 20 The k used for k-reciprocal nearest neighbors >0
k2 unsigned int 6 The k used for local query expansion >0
lambda_value float 0.3 The weight of original distance in the combination with Jaccard distance >0.0

train

The train parameter defines the hyperparameters of the training process.

Copy
Copied!
            

train: optim: name: Adam lr_monitor: val_loss steps: [40, 70] gamma: 0.1 bias_lr_factor: 1 weight_decay: 0.0005 weight_decay_bias: 0.0005 warmup_factor: 0.01 warmup_iters: 10 warmup_method: linear base_lr: 0.00035 momentum: 0.9 center_loss_weight: 0.0005 center_lr: 0.5 triplet_loss_margin: 0.3 num_epochs: 10 checkpoint_interval: 5 validation_interval: 5 seed: 1234

Parameter Datatype Default Description Supported Values
num_gpus unsigned int 1 The number of GPUs to use for distributed training >0
gpu_ids List[int] [0] The indices of the GPU’s to use for distributed training
seed unsigned int 1234 The random seed for random, NumPy, and torch >0
num_epochs unsigned int 10 The total number of epochs to run the experiment >0
checkpoint_interval unsigned int 1 The epoch interval at which the checkpoints are saved >0
validation_interval unsigned int 1 The epoch interval at which the validation is run >0
resume_training_checkpoint_path string The intermediate PyTorch Lightning checkpoint to resume training from
results_dir string /results/train The directory to save training results
optim dict config The configuration for the SGD optimizer, including the learning rate, learning scheduler, weight decay, etc.
clip_grad_norm float 0.0 The amount to clip the gradient by the L2 norm. A value of 0.0 specifies no clipping. >=0

optim

The optim parameter defines the config for the SGD optimizer in training, including the learning rate, learning scheduler, and weight decay.

Copy
Copied!
            

optim: name: Adam lr_monitor: val_loss lr_steps: [40, 70] gamma: 0.1 bias_lr_factor: 1 weight_decay: 0.0005 weight_decay_bias: 0.0005 warmup_factor: 0.01 warmup_iters: 10 warmup_method: linear base_lr: 0.00035 momentum: 0.9 center_loss_weight: 0.0005 center_lr: 0.5 triplet_loss_margin: 0.3

Parameter

Datatype

Default

Description

Supported Values

name string Adam The name of the optimizer Adam/SGD/Adamax/…
lr_monitor string val_loss The monitor value for the AutoReduce scheduler val_loss/train_loss
lr_steps int list [40, 70] The steps to decrease the learning rate for the MultiStep scheduler int list
gamma float 0.1 The decay rate for the WarmupMultiStepLR >0.0
bias_lr_factor float 1 The bias learning rate factor for the WarmupMultiStepLR >=1
weight_decay float 0.0005 The weight decay coefficient for the optimizer >0.0
weight_decay_bias float 0.0005 The weight decay bias for the optimizer >0.0
warmup_factor float 0.01 The warmup factor for the WarmupMultiStepLR scheduler >0.0
warmup_iters unsigned int 10 The number of warmup iterations for the WarmupMultiStepLR scheduler >0
warmup_method string linear The warmup method for the optimizer linear/cosine
base_lr float 0.00035 The initial learning rate for the training >0.0
momentum float 0.9 The momentum for the WarmupMultiStepLR optimizer >0.0
center_loss_weight float 0.0005 The balanced weight of center loss >0.0
center_lr float 0.5 The learning rate of SGD to learn the centers of center loss >0.0
triplet_loss_margin float 0.3 The margin value for triplet loss >0.0

Use the following command to run ReIdentificationNet training:

Copy
Copied!
            

tao model re_identification train [-h] -e <experiment_spec> [results_dir=<global_results_dir>] [model.<model_option>=<model_option_value>] [dataset.<dataset_option>=<dataset_option_value>] [train.<train_option>=<train_option_value>] [train.gpu_ids=<gpu indices>] [train.num_gpus=<number of gpus>]

Required Arguments

  • -e, --experiment_spec_file: The path to the experiment spec file.

Optional Arguments

You can set optional arguments to override the option values in the experiment spec file.

Note

For training, evaluation, and inference, we expose 2 variables for each respective task: num_gpus and gpu_ids, which default to 1 and [0], respectively. If both are passed, but inconsistent, for example num_gpus = 1, gpu_ids = [0, 1], then they are modified to follow the setting with more GPUs, for example num_gpus = 1 -> num_gpus = 2.

Checkpointing and Resuming Training

At every train.checkpoint_interval, a PyTorch Lightning checkpoint is saved. It is called model_epoch_<epoch_num>.pth. These are saved in train.results_dir, like so:

Copy
Copied!
            

$ ls /results/train 'model_epoch_000.pth' 'model_epoch_001.pth' 'model_epoch_002.pth' 'model_epoch_003.pth' 'model_epoch_004.pth'

The latest checkpoint is saved as reid_model_latest.pth. Training automatically resumes from reid_model_latest.pth, if it exists in train.results_dir. This is superseded by train.resume_training_checkpoint_path, if it is provided.

The major implication of this logic is that, if you wish to trigger fresh training from scratch, either:

  • Specify a new, empty results directory (Recommended)

  • Remove the latest checkpoint from the results directory

The evaluation metric of ReIdentificationNet is the mean average precision and ranked accuracy. The plots of sampled matches and the cumulative matching characteristic (CMC) curve can be obtained using the evaluate.output_sampled_matches_plot and evaluate.output_cmc_curve_plot parameters, respectively.

Use the following command to run ReIdentificationNet evaluation:

Copy
Copied!
            

tao model re_identification evaluate [-h] -e <experiment_spec_file> evaluate.checkpoint=<model to be evaluated> evaluate.output_sampled_matches_plot=<path to the output sampled matches plot> evaluate.output_cmc_curve_plot=<path to the output CMC curve plot> evaluate.test_dataset=<path to test data> evaluate.query_dataset=<path to query data> [evaluate.<evaluate_option>=<evaluate_option_value>] [evaluate.gpu_ids=<gpu indices>] [evaluate.num_gpus=<number of gpus>]

Multi-GPU evaluation is not supported for Re-Identification.

Required Arguments

  • -e, --experiment_spec_file: The experiment spec file to set up the evaluation experiment

  • evaluate.checkpoint: The .pth model

  • evaluate.output_sampled_matches_plot: The path to the plotted file of sampled matches

  • evaluate.output_cmc_curve_plot: The path to the plotted file of the CMC curve

  • evaluate.test_dataset: The path to the test data

  • evaluate.query_dataset: The path to the query data

Optional Argument

  • evaluate.gpu_ids: The GPU indices to run evaluation. Defaults to [0].

  • evaluate.num_gpus: The number of GPUs to run evaluation. Defualts to 1.

  • evaluate.results_dir: The directory to save the evaluation results. Defaults to /results/evaluate.

Use the following command to run inference on ReIdentificationNet with the .tlt model.

Copy
Copied!
            

tao model re_identification inference [-h] -e <experiment_spec> inference.checkpoint=<inference model> inference.output_file=<path to output file> inference.test_dataset=<path to gallery data> inference.query_dataset=<path to query data> [inference.<infer_option>=<infer_option_value>] [inference.gpu_ids=<gpu indices>] [inference.num_gpus=<number of gpus>]

The output is a JSON file that contains the feature embeddings of all the test and query data.

Multi-GPU inference is currently not supported for Re-Identification.

Required Arguments

  • -e, --experiment_spec: The experiment spec file to set up inference

  • inference.checkpoint: The .pth model to perform inference with

  • inference.output_file: The path to the output JSON file

  • inference.test_dataset: The path to the test data

  • inference.query_dataset: The path to the query data

Optional Argument

  • inference.gpu_ids: The GPU indices to run inference. Defaults to [0].

  • inference.num_gpus: The number of GPUs to run inference. Defualts to 1.

  • inference.results_dir: The directory to save the inference results. Defaults to /results/inference.

The expected output would be as follows:

Copy
Copied!
            

[ { "img_path": "/path/to/img1.jpg", "embedding": [-0.30, 0.12, 0.13,...] }, { "img_path": "/path/to/img2.jpg", "embedding": [-0.10, -0.06, -1.85,...] }, ... { "img_path": "/path/to/imgN.jpg", "embedding": [1.41, 0.63, -0.15,...] } ]

Use the following command to export ReIdentificationNet to .onnx format for deployment:

Copy
Copied!
            

tao model re_identification export -e <experiment_spec> export.checkpoint=<tlt checkpoint to be exported> export.onnx_file=<path to exported file> [export.gpu_id=<gpu index>]

Required Arguments

  • -e, --experiment_spec: The experiment spec file to set up export.

  • export.checkpoint: The .pth model to be exported.

  • export.onnx_file: The path to save the exported model to. The default path is in the same directory as the \*.pth model.

Optional Arguments

  • export.gpu_id: The index of the GPU that will be used to run the export. You can specify this value when the machine has multiple GPUs installed. Note that export can only run on a single GPU.

Here’s an example of using the ReIdentificationNet export command:

You can deploy the trained deep -earning and computer-vision models on edge devices–such as a Jetson Xavier, Jetson Nano, or Tesla–or in the cloud with NVIDIA GPUs. The exported \*.onnx model can also be used with TAO Triton Apps.

Running ReIdentificationNet Inference on the Triton Sample

The TAO Triton Apps provide an inference sample for ReIdentificationNet. It consumes a TensorRT engine and supports running with a directory of query (probe) images and a directory of test (gallery) images containing the same identities.

To use this sample, you need to generate the TensorRT engine from an \*.onnx model using trtexec.

Generating TensorRT Engine Using trtexec

For instructions on generating a TensorRT engine using the trtexec command, refer to the trtexec guide for ReIdentificationNet.

Running the Triton Inference Sample

You can generate the TensorRT engine when starting the Triton server using the following command:

Copy
Copied!
            

bash scripts/start_server.sh

When the server is running, you can get results from a directory of query images and a directory of test images using the following command with a client:

Copy
Copied!
            

python tao_client.py <path_to_query_directory> \ --test_dir <path_to_test_directory> -m re_identification_tao model \ -x 1 \ -b 16 \ --mode Re_identification \ -i https \ -u localhost:8000 \ --async \ --output_path <path_to_output_directory>

Note

The server will perform inference on the input image directories. The results are saved as a JSON file. The following is a sample of the JSON output:

Copy
Copied!
            

[ ..., { "img_path": "/localhome/Data/market1501/query/1121_c3s2_156744_00.jpg", "embedding": [-1.1530249118804932, -1.8521332740783691,..., 0.380886435508728] },... { "img_path": "/localhome/Data/market1501/bounding_box_test/1377_c2s3_038007_05.jpg", "embedding": [0.09496910870075226, 0.26107653975486755,..., 0.2835155725479126] },... ]

End-to-End Inference Using Triton

The TAO Triton Apps provides a sample for end-to-end inference from a directory of query images and a directory of test images. The sample downloads the Market-1501 dataset and randomly samples a subset of 100 identities. The client implicitly converts the image samples into arrays and sends them to the Triton server. The feature embedding for each image is returned and saved to the JSON output. An image of sampled matches and a figure of the CMC curve is also generated for visualization.

You can start the Triton server using the following command (only the ReIdentificationNet model will be downloaded and converted into a TensorRT engine):

Copy
Copied!
            

bash scripts/re_id_e2e_inference/start_server.sh

Once the Triton server has started, open another terminal and use the following command to run re-identification on the query and test images using the Triton server instance that you have previously spun up:

Copy
Copied!
            

bash scripts/re_id_e2e_inference/start_client.sh

Previous ReIdentificationNet
Next ActionRecognitionNet
© Copyright 2024, NVIDIA. Last updated on Aug 30, 2024.