TAO v5.5.0
NVIDIA TAO v5.5.0

Deploying to DeepStream for DINO

The deep learning and computer vision models that you’ve trained can be deployed on edge devices, such as a Jetson Xavier or Jetson Nano, a discrete GPU, or in the cloud with NVIDIA GPUs. TAO has been designed to integrate with DeepStream SDK, so models trained with TAO will work out of the box with DeepStream SDK.

DeepStream SDK is a streaming analytic toolkit to accelerate building AI-based video analytic applications. This section will describe how to deploy your trained model to DeepStream SDK.

To deploy a model trained by TAO to DeepStream we have two options:

  • Option 1: Integrate the .etlt model directly in the DeepStream app. The model file is generated by export.

  • Option 2: Generate a device-specific optimized TensorRT engine using TAO Deploy. The generated TensorRT engine file can also be ingested by DeepStream.

  • Option 3 (Deprecated for x86 devices): Generate a device-specific optimized TensorRT engine using TAO Converter.

Machine-specific optimizations are done as part of the engine creation process, so a distinct engine should be generated for each environment and hardware configuration. If the TensorRT or CUDA libraries of the inference environment are updated (including minor version updates), or if a new model is generated, new engines need to be generated. Running an engine that was generated with a different version of TensorRT and CUDA is not supported and will cause unknown behavior that affects inference speed, accuracy, and stability, or it may fail to run altogether.

Option 1 is very straightforward. The .etlt file and calibration cache are directly used by DeepStream. DeepStream will automatically generate the TensorRT engine file and then run inference. TensorRT engine generation can take some time depending on size of the model and type of hardware.

Engine generation can be done ahead of time with Option 2: TAO Deploy is used to convert the .etlt file to TensorRT; this file is then provided directly to DeepStream. The TAO Deploy workflow is similar to TAO Converter, which is deprecated for x86 devices from TAO version 4.0.x but is still required for deployment to Jetson devices.

See the Exporting the Model section for more details on how to export a TAO model.

The TensorRT OSS build is required for DINO models because several prerequisite TensorRT plugins are only available in the TensorRT open source repo and not in the general TensorRT release. Specifically, you need the MultiscaleDeformableAttnPlugin_TRT plugin for DINO.

If your deployment platform is an x86 PC with an NVIDIA GPU, follow the TensorRT OSS on x86 instructions; if your deployment platform is NVIDIA Jetson, follow the TensorRT OSS on Jetson (ARM64) instructions.

TensorRT OSS on x86

Building TensorRT OSS on x86:

  1. Install Cmake (>=3.13).

    Note

    TensorRT OSS requires cmake >= v3.13, so install cmake 3.13 if your cmake version is lower than 3.13c

    Copy
    Copied!
                

    sudo apt remove --purge --auto-remove cmake wget https://github.com/Kitware/CMake/releases/download/v3.13.5/cmake-3.13.5.tar.gz tar xvf cmake-3.13.5.tar.gz cd cmake-3.13.5/ ./configure make -j$(nproc) sudo make install sudo ln -s /usr/local/bin/cmake /usr/bin/cmake


  2. Get GPU architecture. The GPU_ARCHS value can be retrieved by the deviceQuery CUDA sample:

    Copy
    Copied!
                

    cd /usr/local/cuda/samples/1_Utilities/deviceQuery sudo make ./deviceQuery

    If the /usr/local/cuda/samples doesn’t exist in your system, you could download deviceQuery.cpp from this GitHub repo. Compile and run deviceQuery.

    Copy
    Copied!
                

    nvcc deviceQuery.cpp -o deviceQuery ./deviceQuery

    This command will output something like this, which indicates the GPU_ARCHS is 75 based on CUDA Capability major/minor version.

    Copy
    Copied!
                

    Detected 2 CUDA Capable device(s) Device 0: "Tesla T4" CUDA Driver Version / Runtime Version 10.2 / 10.2 CUDA Capability Major/Minor version number: 7.5

  3. Build TensorRT OSS:

    Copy
    Copied!
                

    git clone -b 21.08 https://github.com/nvidia/TensorRT cd TensorRT/ git submodule update --init --recursive export TRT_SOURCE=`pwd` cd $TRT_SOURCE mkdir -p build && cd build

    Note

    Make sure your GPU_ARCHS from step 2 is in TensorRT OSS CMakeLists.txt. If GPU_ARCHS is not in TensorRT OSS CMakeLists.txt, add -DGPU_ARCHS=<VER> as below, where <VER> represents GPU_ARCHS from step 2.

    Copy
    Copied!
                

    /usr/local/bin/cmake .. -DGPU_ARCHS=xy -DTRT_LIB_DIR=/usr/lib/x86_64-linux-gnu/ -DCMAKE_C_COMPILER=/usr/bin/gcc -DTRT_BIN_DIR=`pwd`/out make nvinfer_plugin -j$(nproc)

    After building ends successfully, libnvinfer_plugin.so* will be generated under \`pwd\`/out/.

  4. Replace the original libnvinfer_plugin.so*:

    Copy
    Copied!
                

    sudo mv /usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.8.x.y ${HOME}/libnvinfer_plugin.so.8.x.y.bak // backup original libnvinfer_plugin.so.x.y sudo cp $TRT_SOURCE/`pwd`/out/libnvinfer_plugin.so.8.m.n /usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.8.x.y sudo ldconfig

TensorRT OSS on Jetson (ARM64)

  1. Install Cmake (>=3.13)

    Note

    TensorRT OSS requires cmake >= v3.13, while the default cmake on Jetson/Ubuntu 18.04 is cmake 3.10.2.

    Upgrade TensorRT OSS using:

    Copy
    Copied!
                

    sudo apt remove --purge --auto-remove cmake wget https://github.com/Kitware/CMake/releases/download/v3.13.5/cmake-3.13.5.tar.gz tar xvf cmake-3.13.5.tar.gz cd cmake-3.13.5/ ./configure make -j$(nproc) sudo make install sudo ln -s /usr/local/bin/cmake /usr/bin/cmake

  2. Get GPU architecture based on your platform. The GPU_ARCHS for different Jetson platform are given in the following table.

    Jetson Platform GPU_ARCHS
    Nano/Tx1 53
    Tx2 62
    AGX Xavier/Xavier NX 72
  3. Build TensorRT OSS:

    Copy
    Copied!
                

    git clone -b 21.03 https://github.com/nvidia/TensorRT cd TensorRT/ git submodule update --init --recursive export TRT_SOURCE=`pwd` cd $TRT_SOURCE mkdir -p build && cd build

    Note

    The -DGPU_ARCHS=72 below is for Xavier or NX, for other Jetson platform, change 72 referring to GPU_ARCHS from step 2.

    Copy
    Copied!
                

    /usr/local/bin/cmake .. -DGPU_ARCHS=72 -DTRT_LIB_DIR=/usr/lib/aarch64-linux-gnu/ -DCMAKE_C_COMPILER=/usr/bin/gcc -DTRT_BIN_DIR=`pwd`/out make nvinfer_plugin -j$(nproc)

    After building ends successfully, libnvinfer_plugin.so* will be generated under ‘pwd’/out/.

  4. Replace "libnvinfer_plugin.so*" with the newly generated.

    Copy
    Copied!
                

    sudo mv /usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so.8.x.y ${HOME}/libnvinfer_plugin.so.8.x.y.bak // backup original libnvinfer_plugin.so.x.y sudo cp `pwd`/out/libnvinfer_plugin.so.8.m.n /usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so.8.x.y sudo ldconfig

For a DINO model, you will need to build the TensorRT open source plugins and custom bounding box parser. The instructions are provided in the TensorRT Open Source Software (OSS) section above, and the required code can be found in this GitHub repo.

To integrate the models with DeepStream, you will need the following:

  • The DeepStream SDK. The installation instructions for DeepStream are provided in the DeepStream Development Guide.

  • An exported .onnx model file and optional calibration cache for INT8 precision

  • TensorRT 8+ OSS Plugins

  • A labels.txt file containing the labels for classes in the order in which the networks produces outputs

  • A sample config_infer_*.txt file to configure the nvinfer element in DeepStream. The nvinfer element handles everything related to TensorRT optimization and engine creation in DeepStream.

The DeepStream SDK ships with an end-to-end reference application that is fully configurable. You can configure the input sources, inference model, and output sinks. The app requires a primary object detection model, followed by an optional secondary classification model. The reference application is installed as deepstream-app. The graphic below shows the architecture of the reference application.

arch_ref_appl.png

There are typically two or more configuration files that are used with this app. In the install directory, the config files are located in samples/configs/deepstream-app or sample/configs/tlt_pretrained_models. The main config file configures all the high-level parameters in the pipeline above, setting the input source and resolution, number of inferences, tracker, and output sinks. The supporting config files configure each individual inference engine. The inference-specific config files are used to specify models, inference resolution, batch size, number of classes and other customization. The main config file will call all the supporting config files. The following are config files in the samples/configs/deepstream-app directory for reference:

  • source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt: The main config file

  • config_infer_primary.txt: The supporting config file for the primary detector in the pipeline above

  • config_infer_secondary_*.txt: The supporting config file for the secondary classifier in the pipeline above

The deepstream-app will only work with the main config file. This file will most likely remain the same for all models and can be used directly from the DeepStream SDK with little to no modification. You will only need to modify or create config_infer_primary.txt and config_infer_secondary_*.txt.

Integrating a DINO Model

To run a DINO model in DeepStream, you need a label file and a DeepStream configuration file. You also need to compile the TensorRT 8+ OSS and DINO bounding box parser for DeepStream.

A DeepStream sample, including documentation on how to run inference using the trained DINO models from TAO, is provided on GitHub here.

Prerequisites for a DINO Model

  1. DINO requires the MultiscaleDeformableAttnPlugin_TRT plugin. This plugin is available in the TensorRT open source repo. Detailed instructions for building TensorRT OSS can be found in the TensorRT Open Source Software (OSS) section.

  2. DINO requires custom bounding-box parsers that are not built-in inside the DeepStream SDK. The source code to build custom bounding-box parsers for DINO is available here. The following instructions can be used to build the bounding-box parser:

    1. Install git-lfs (git >= 1.8.2).

      Copy
      Copied!
                  

      curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash sudo apt-get install git-lfs git lfs install

    2. Download the source code with SSH or HTTPS:

      Copy
      Copied!
                  

      git clone -b release/tlt3.0 https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps

    3. Build the custom bounding-box parser:

      Copy
      Copied!
                  

      // or Path for DS installation export CUDA_VER=10.2 // CUDA version, e.g. 10.2 make

This generates libnvds_infercustomparser_tlt.so in the directory post_processor.

If the COCO annotation file has the following in categories:

Copy
Copied!
            

[{'supercategory': 'Person', 'id': 1, 'name': 'Person'}, {'supercategory': 'Face', 'id': 1, 'name': 'Face'}, {'supercategory': 'Bag', 'id': 2, 'name': 'Bag'}]

Then the corresponding ddetr_labels.txt file will be as follows:

Copy
Copied!
            

BG Person Face Bag

The detection model is typically used as a primary inference engine. It can also be used as a secondary inference engine. To run this model in the sample deepstream-app, you must modify the existing config_infer_primary.txt file to point to this model.

dstream_deploy_options2.png

Option 1: Integrate the model (.onnx) directly in the DeepStream app.

For this option, users will need to add the following parameters in the configuration file.

Copy
Copied!
            

onnx-file=<TAO exported .onnx> int8-calib-file=<Calibration cache file>

From TAO 5.0.0, .etlt is deprecated. To integrate .etlt directly in the DeepStream app, you need following parmaters in the configuration file.

Copy
Copied!
            

tlt-encoded-model=<TLT exported .etlt> tlt-model-key=<Model export key>

The tlt-encoded-model parameter points to the exported model (.etlt) from TLT. The tlt-model-key is the encryption key used during model export.

Option 2: Integrate the TensorRT engine file with the DeepStream app.

  1. Generate the device-specific TensorRT engine using TAO Deploy.

  2. After the engine file is generated, modify the following parameter to use this engine with DeepStream:

    Copy
    Copied!
                

    model-engine-file=<PATH to generated TensorRT engine>

All other parameters are identical between the two approaches. To use the custom bounding box parser instead of the default parsers in DeepStream, modify the following parameters in the [property] section of the config_infer_primary.txt file:

Copy
Copied!
            

parse-bbox-func-name=NvDsInferParseCustomDDETRTAO custom-lib-path=<PATH to libnvds_infercustomparser_tlt.so>

Add the label file generated above using the following:

Copy
Copied!
            

labelfile-path=<deformable_detr labels>

For all options, see the sample configuration file below. To learn more about what the parameters are used for, refer to the DeepStream Development Guide.

Copy
Copied!
            

[property] gpu-id=0 offsets=123.675;116.28;103.53 net-scale-factor=0.0173520735728 labelfile-path=<Path to dino_labels.txt> onnx-file=<Path to DINO onnx model> model-engine-file=<Path to DINO engine file> batch-size=1 ## 0=FP32, 1=INT8, 2=FP16 mode network-mode=2 num-detected-classes=91 interval=0 gie-unique-id=1 output-blob-names=pred_boxes;pred_logits infer-dims=3;544;960 cluster-mode=4 parse-bbox-func-name=NvDsInferParseCustomDDETRTAO custom-lib-path=libnvds_infercustomparser_tao.so [class-attrs-all] pre-cluster-threshold=0.5 topk=300

Previous Deploying to DeepStream for Deformable DETR
Next Deploying to DeepStream for DSSD
© Copyright 2024, NVIDIA. Last updated on Aug 30, 2024.