NVIDIA Modulus Sym v1.0.0
Sym v1.0.0

deeplearning/modulus/modulus-sym-v100/_modules/modulus/sym/utils/sympy/torch_printer.html

Source code for modulus.sym.utils.sympy.torch_printer

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Helper functions for converting sympy equations to pytorch
"""

from sympy import lambdify, Symbol, Derivative, Function, Basic, Add, Max, Min
from sympy.printing.str import StrPrinter
import torch
import numpy as np
import functools
from typing import List, Dict

from modulus.sym.constants import diff_str, tf_dt


[docs]def torch_lambdify(f, r, separable=False): """ generates a PyTorch function from a sympy equation Parameters ---------- f : Sympy Exp, float, int, bool the equation to convert to torch. If float, int, or bool this gets converted to a constant function of value `f`. r : list, dict A list of the arguments for `f`. If dict then the keys of the dict are used. Returns ------- torch_f : PyTorch function """ try: f = float(f) except: pass if isinstance(f, (float, int, bool)): # constant function def loop_lambda(constant): return lambda **x: torch.zeros_like(next(iter(x.items()))[1]) + constant lambdify_f = loop_lambda(f) else: vars = [k for k in r] if separable else [[k for k in r]] try: # NOTE this fixes a very odd bug in SymPy TODO add issue to SymPy lambdify_f = lambdify(vars, f, [TORCH_SYMPY_PRINTER]) except: lambdify_f = lambdify(vars, f, [TORCH_SYMPY_PRINTER]) return lambdify_f

def _where_torch(conditions, x, y): if isinstance(x, (int, float)): x = float(x) * torch.ones(*conditions.get_shape()) if isinstance(y, (int, float)): y = float(y) * torch.ones(*conditions.get_shape()) return torch.where(conditions, x, y) def _heaviside_torch(x): return torch.maximum(torch.sign(x), torch.zeros(1, device=x.device)) def _sqrt_torch(x): return torch.sqrt((x - 1e-6) * _heaviside_torch(x - 1e-6) + 1e-6) # TODO: Add jit version here def _or_torch(*x): return_value = x[0] for value in x: return_value = torch.logical_or(return_value, value) return return_value # TODO: Add jit version here def _and_torch(*x): return_value = x[0] for value in x: return_value = torch.logical_and(return_value, value) return return_value @torch.jit.script def _min_jit(x: List[torch.Tensor]): assert len(x) > 0 min_tensor = x[0] for i in range(1, len(x)): min_tensor = torch.minimum(min_tensor, x[i]) return min_tensor def _min_torch(*x): # get tensor shape for value in x: if not isinstance(value, (int, float)): tensor_shape = list(map(int, value.shape)) device = value.device # convert all floats and ints to tensor x_only_tensors = [] for value in x: if isinstance(value, (int, float)): value = torch.zeros(tensor_shape, device=device) + value x_only_tensors.append(value) # reduce min min_tensor, _ = torch.min(torch.stack(x_only_tensors, -1), -1) return min_tensor # jit option # return _min_jit(x_only_tensors) # TODO: benchmark this other option that avoids stacking and extra memory movement # Update: cannot jit this because TorchScript doesn't support functools.reduce # return functools.reduce(torch.minimum, x) @torch.jit.script def _max_jit(x: List[torch.Tensor]): assert len(x) > 0 max_tensor = x[0] for i in range(1, len(x)): max_tensor = torch.maximum(max_tensor, x[i]) return max_tensor def _max_torch(*x): # get tensor shape for value in x: if not isinstance(value, (int, float)): tensor_shape = list(map(int, value.shape)) device = value.device # convert all floats and ints to tensor x_only_tensors = [] for value in x: if isinstance(value, (int, float)): value = (torch.zeros(tensor_shape) + value).to(device) x_only_tensors.append(value) # reduce max max_tensor, _ = torch.max(torch.stack(x_only_tensors, -1), -1) return max_tensor # jit option # return _max_jit(x_only_tensors) def _dirac_delta_torch(x): return torch.eq(x, 0.0).to(tf_dt) TORCH_SYMPY_PRINTER = { "abs": torch.abs, "Abs": torch.abs, "sign": torch.sign, "ceiling": torch.ceil, "floor": torch.floor, "log": torch.log, "exp": torch.exp, "sqrt": _sqrt_torch, "cos": torch.cos, "acos": torch.acos, "sin": torch.sin, "asin": torch.asin, "tan": torch.tan, "atan": torch.atan, "atan2": torch.atan2, "cosh": torch.cosh, "acosh": torch.acosh, "sinh": torch.sinh, "asinh": torch.asinh, "tanh": torch.tanh, "atanh": torch.atanh, "erf": torch.erf, "loggamma": torch.lgamma, "Min": _min_torch, "Max": _max_torch, "Heaviside": _heaviside_torch, "DiracDelta": _dirac_delta_torch, "logical_or": _or_torch, "logical_and": _and_torch, "where": _where_torch, "pi": np.pi, "conjugate": torch.conj, }

[docs]class CustomDerivativePrinter(StrPrinter): def _print_Function(self, expr): """ Custom printing of the SymPy Derivative class. Instead of: D(x(t), t) We will print: x__t """ return expr.func.__name__ def _print_Derivative(self, expr): """ Custom printing of the SymPy Derivative class. Instead of: D(x(t), t) We will print: x__t """ prefix = str(expr.args[0].func) for expr in expr.args[1:]: prefix += expr[1] * (diff_str + str(expr[0])) return prefix

def _subs_derivatives(expr): while True: try: deriv = expr.atoms(Derivative).pop() new_fn_name = str(deriv) expr = expr.subs(deriv, Function(new_fn_name)(*deriv.free_symbols)) except: break while True: try: fn = { fn for fn in expr.atoms(Function) if fn.class_key()[1] == 0 }.pop() # check if standard Sympy Eq (TODO better check) new_symbol_name = str(fn) expr = expr.subs(fn, Symbol(new_symbol_name)) except: break return expr # Override the __str__ method of to use CustromStrPrinter Basic.__str__ = lambda self: CustomDerivativePrinter().doprint(self) # Class to compile and evaluate a sympy expression in PyTorch # Cannot currently script this module because self.torch_expr is unknown

[docs]class SympyToTorch(torch.nn.Module): def __init__( self, sympy_expr, name: str, freeze_terms: List[int] = [], detach_names: List[str] = [], ): super().__init__() # Sort keys to guarantee ordering self.keys = sorted([k.name for k in sympy_expr.free_symbols]) self.freeze_terms = freeze_terms if not self.freeze_terms: self.torch_expr = torch_lambdify(sympy_expr, self.keys) else: assert all( x < len(Add.make_args(sympy_expr)) for x in freeze_terms ), "The freeze term index cannot be larger than the total terms in the expression" self.torch_expr = [] for i in range(len(Add.make_args(sympy_expr))): self.torch_expr.append( torch_lambdify(Add.make_args(sympy_expr)[i], self.keys) ) self.freeze_list = list(self.torch_expr[i] for i in freeze_terms) self.name = name self.detach_names = detach_names
[docs] def forward(self, var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: args = [ var[k].detach() if k in self.detach_names else var[k] for k in self.keys ] if not self.freeze_terms: output = self.torch_expr(args) else: output = torch.zeros_like(var[self.keys[0]]) for i, expr in enumerate(self.torch_expr): if expr in self.freeze_list: output += expr(args).detach() else: output += expr(args) return {self.name: output}
© Copyright 2023, NVIDIA Modulus Team. Last updated on Aug 8, 2023.