LLMs#
Supported LLM Providers#
NeMo Agent toolkit supports the following LLM providers:
Provider |
Type |
Description |
|---|---|---|
|
NVIDIA Inference Microservice (NIM) |
|
|
OpenAI API |
|
|
AWS Bedrock API |
LLM Configuration#
The LLM configuration is defined in the llms section of the workflow configuration file. The _type value refers to the LLM provider, and the model_name value always refers to the name of the model to use.
llms:
nim_llm:
_type: nim
model_name: meta/llama-3.1-70b-instruct
openai_llm:
_type: openai
model_name: gpt-4o-mini
aws_bedrock_llm:
_type: aws_bedrock
model_name: meta/llama-3.1-70b-instruct
region_name: us-east-1
NVIDIA NIM#
The NIM LLM provider is defined by the NIMModelConfig class.
model_name- The name of the model to usetemperature- The temperature to use for the modeltop_p- The top-p value to use for the modelmax_tokens- The maximum number of tokens to generateapi_key- The API key to use for the modelbase_url- The base URL to use for the modelmax_retries- The maximum number of retries for the request
OpenAI#
The OpenAI LLM provider is defined by the OpenAIModelConfig class.
model_name- The name of the model to usetemperature- The temperature to use for the modeltop_p- The top-p value to use for the modelmax_tokens- The maximum number of tokens to generateseed- The seed to use for the modelapi_key- The API key to use for the modelbase_url- The base URL to use for the modelmax_retries- The maximum number of retries for the request
AWS Bedrock#
The AWS Bedrock LLM provider is defined by the AWSBedrockModelConfig class.
model_name- The name of the model to usetemperature- The temperature to use for the modelmax_tokens- The maximum number of tokens to generatecontext_size- The context size to use for the modelregion_name- The region to use for the modelbase_url- The base URL to use for the modelcredentials_profile_name- The credentials profile name to use for the model