deeplearning/modulus/modulus-sym-v130/_modules/modulus/sym/eq/pdes/basic.html

Source code for modulus.sym.eq.pdes.basic

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Basic equations
"""

from sympy import Symbol, Function, Number

from modulus.sym.eq.pde import PDE
from modulus.sym.node import Node


[docs]class NormalDotVec(PDE): """ Normal dot velocity Parameters ========== dim : int Dimension of the equations (1, 2, or 3). Default is 3. """ name = "NormalDotVec" def __init__(self, vec=["u", "v", "w"]): # normal normal = [Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z")] # make input variables self.equations = {} self.equations["normal_dot_vel"] = 0 for v, n in zip(vec, normal): self.equations["normal_dot_vel"] += Symbol(v) * n
[docs]class GradNormal(PDE): """ Implementation of the gradient boundary condition Parameters ========== T : str The dependent variable. dim : int Dimension of the equations (1, 2, or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. Examples ======== >>> gn = ns = GradNormal(T='T') >>> gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z """ name = "GradNormal" def __init__(self, T, dim=3, time=True): self.T = T self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # variables to set the gradients (example Temperature) T = Function(T)(*input_variables) # set equations self.equations = {} self.equations["normal_gradient_" + self.T] = ( normal_x * T.diff(x) + normal_y * T.diff(y) + normal_z * T.diff(z) )
[docs]class Curl(PDE): """ del cross vector operator Parameters ========== vector : tuple of 3 Sympy Exprs, floats, ints or strings This will be the vector to take the curl of. curl_name : tuple of 3 strings These will be the output names of the curl operations. Examples ======== >>> c = Curl((0,0,'phi'), ('u','v','w')) >>> c.pprint() u: phi__y v: -phi__x w: 0 """ name = "Curl" def __init__(self, vector, curl_name=["u", "v", "w"]): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # vector v_0 = vector[0] v_1 = vector[1] v_2 = vector[2] # make funtions if type(v_0) is str: v_0 = Function(v_0)(*input_variables) elif type(v_0) in [float, int]: v_0 = Number(v_0) if type(v_1) is str: v_1 = Function(v_1)(*input_variables) elif type(v_1) in [float, int]: v_1 = Number(v_1) if type(v_2) is str: v_2 = Function(v_2)(*input_variables) elif type(v_2) in [float, int]: v_2 = Number(v_2) # curl curl_0 = v_2.diff(y) - v_1.diff(z) curl_1 = v_0.diff(z) - v_2.diff(x) curl_2 = v_1.diff(x) - v_0.diff(y) # set equations self.equations = {} self.equations[curl_name[0]] = curl_0 self.equations[curl_name[1]] = curl_1 self.equations[curl_name[2]] = curl_2
© Copyright 2023, NVIDIA Modulus Team. Last updated on Jan 25, 2024.