NVIDIA Modulus Sym v1.3.0
Sym v1.3.0

deeplearning/modulus/modulus-sym-v130/_modules/modulus/sym/geometry/adf.html

Source code for modulus.sym.geometry.adf

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
from typing import List, Tuple, Dict


[docs]class ADF(torch.nn.Module): """ Used for hard imposition of boundary conditions. Currently supports 2d geometries and Dirichlet boundary conditions. Contributors: M. A. Nabian, R. Gladstone, H. Meidani, N. Sukumar, A. Srivastava Reference: "Sukumar, N. and Srivastava, A., 2021. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, p.114333." """ def __init__(self): super().__init__() self.mu: float = 2.0 self.m: float = 2.0 self.eps: float = 1e-8
[docs] def forward(self, invar): raise RuntimeError("No forward method was defined for ADF or its child class")
[docs] @staticmethod def r_equivalence(omegas: List[torch.Tensor], m: float = 2.0) -> torch.Tensor: """ Computes the R-equivalence of a collection of approximate distance functions Parameters ---------- omegas : List[torch.Tensor] List of ADFs used to compute the R-equivalence. m: float Normalization order Returns ------- omega_E : torch.Tensor R-equivalence distance """ omega_E = torch.zeros_like(omegas[0]) for omega in omegas: omega_E += 1.0 / omega**m omega_E = 1.0 / omega_E ** (1.0 / m) return omega_E
[docs] @staticmethod def transfinite_interpolation( bases: List[torch.Tensor], indx: int, eps: float = 1e-8 ) -> torch.Tensor: """ Performs transfinite interpolation of the boundary conditions Parameters ---------- bases: List[torch.Tensor] List of ADFs used for the transfinite interpolation. indx: int index of the interpolation basis eps: float Small value to avoid division by zero Returns ------- w : torch.Tensor Interpolation basis corresponding to the input index """ bases_reduced = [bases[i] for i in range(len(bases)) if i != indx] numerator = torch.prod(torch.stack(bases_reduced), dim=0) denominator = 0.0 for j in range(len(bases)): denom_term = [bases[i] for i in range(len(bases)) if i != j] denominator += torch.prod(torch.stack(denom_term), dim=0) w = torch.div(numerator, denominator + eps) return w
[docs] @staticmethod def infinite_line_adf( points: Tuple[torch.Tensor], point_1: Tuple[float], point_2: Tuple[float] ) -> torch.Tensor: """ Computes the pointwise approximate distance for an infinite line Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points point_1: Tuple[float] One of the two points that form the infinite line point_2: Tuple[float] One of the two points that form the infinite line Returns ------- omega : torch.Tensor pointwise approximate distance """ L = ADF._distance(point_1, point_2) omega = ( (points[0] - point_1[0]) * (point_2[1] - point_1[1]) - (points[1] - point_1[1]) * (point_2[0] - point_1[0]) ) / L return omega
[docs] @staticmethod def line_segment_adf( points: Tuple[torch.Tensor], point_1: Tuple[float], point_2: Tuple[float] ) -> torch.Tensor: """ Computes the pointwise approximate distance for a line segment Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points point_1: Tuple[float] Point on one end of the line segment point_2: Tuple[float] Point on the other ned of the line segment Returns ------- omega : torch.Tensor pointwise approximate distance """ L = ADF._distance(point_1, point_2) center = ADF._center(point_1, point_2) f = ADF.infinite_line_adf(points, point_1, point_2) t = ADF.circle_adf(points, L / 2, center) phi = torch.sqrt(t**2 + f**4) omega = torch.sqrt(f**2 + ((phi - t) / 2) ** 2) return omega
[docs] @staticmethod def circle_adf( points: Tuple[torch.Tensor], radius: float, center: Tuple[float] ) -> torch.Tensor: """ Computes the pointwise approximate distance for a circle Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points radius: float Radius of the circle center: Tuple[float] Center of the circle Returns ------- omega : torch.Tensor pointwise approximate distance """ omega = ( radius**2 - ((points[0] - center[0]) ** 2 + (points[1] - center[1]) ** 2) ) / (2 * radius) return omega
[docs] @staticmethod def trimmed_circle_adf( points: Tuple[torch.Tensor], point_1: Tuple[float], point_2: Tuple[float], sign: int, radius: float, center: float, ) -> torch.Tensor: """ Computes the pointwise approximate distance of a trimmed circle Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points point_1: Tuple[float] One of the two points that form the trimming infinite line point_2: Tuple[float] One of the two points that form the trimming infinite line sign: int Specifies the trimming side radius: float Radius of the circle center: Tuple[float] Center of the circle Returns ------- omega : torch.Tensor pointwise approximate distance """ assert sign != 0, "sign should be non-negative" f = ADF.circle_adf(points, radius, center) t = np.sign(sign) * ADF.infinite_line_adf(points, point_1, point_2) phi = torch.sqrt(t**2 + f**4) omega = torch.sqrt(f**2 + ((phi - t) / 2) ** 2) return omega

@staticmethod def _distance(point_1: Tuple[float], point_2: Tuple[float]) -> torch.Tensor: """ Computes the distance between two points point_1: Tuple[float] The first point point_2: Tuple[float] The second point Returns ------- distance : torch.Tensor distance between the two points """ distance = np.sqrt( (point_2[0] - point_1[0]) ** 2 + (point_2[1] - point_1[1]) ** 2 ) return distance @staticmethod def _center(point_1: Tuple[float], point_2: Tuple[float]) -> Tuple[float]: """ Computes the center of the two points point_1: Tuple[float] The first point point_2: Tuple[float] The second point Returns ------- center : torch.Tensor Center the two points """ center = ((point_1[0] + point_2[0]) / 2, (point_1[1] + point_2[1]) / 2) return center

© Copyright 2023, NVIDIA Modulus Team. Last updated on Jan 25, 2024.