Source code for modulus.sym.utils.io.csv_rw
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
simple helper functions for reading and
saving CSV files
"""
import csv
import numpy as np
[docs]def csv_to_dict(filename, mapping=None, delimiter=","):
"""
reads a csv file to a dictionary of columns
Parameters
----------
filename : str
The file name to load from
mapping : None, dict
If None load entire csv file and store
every column as a key in the dict. If
`mapping` is not none use this to map
keys from CSV to keys in dict.
delimiter: str
The string used for separating values.
Returns
-------
data : dict of numpy arrays
numpy arrays have shape [N, 1].
"""
# Load csv file
values = np.loadtxt(filename, skiprows=1, delimiter=delimiter, unpack=False)
# get column keys
csvfile = open(filename)
reader = csv.reader(csvfile, delimiter=delimiter)
first_line = next(iter(reader))
# set dictionary
csv_dict = {}
for i, name in enumerate(first_line):
if mapping is not None:
if name.strip() in mapping.keys():
csv_dict[mapping[name.strip()]] = values[:, i : i + 1]
else:
csv_dict[name.strip()] = values[:, i : i + 1]
return csv_dict
[docs]def dict_to_csv(dictonary, filename):
"""
saves a dict of numpy arrays to csv file
Parameters
----------
dictionary : dict
dictionary of numpy arrays. The numpy
arrays have a shape of [N, 1].
filename : str
The file name to save too
"""
# add csv to filename
if filename[-4:] != ".csv":
filename += ".csv"
# save np arrays
csvfile = open(filename, "w+")
csvfile.write(",".join(['"' + str(x) + '"' for x in list(dictonary.keys())]) + "\n")
for i in range(next(iter(dictonary.values())).shape[0]):
csvfile.write(",".join([str(x[i, 0]) for x in dictonary.values()]) + "\n")
csvfile.close()