morpheus_llm.service.vdb.milvus_vector_db_service.MilvusVectorDBResourceService#
- class MilvusVectorDBResourceService(
- name,
- client,
- truncate_long_strings=False,
Bases:
VectorDBResourceServiceRepresents a service for managing resources in a Milvus Vector Database.
- Parameters:
- namestr
Name of the resource.
- clientMilvusClient
An instance of the MilvusClient for interaction with the Milvus Vector Database.
- truncate_long_stringsbool, optional
When true, truncate strings values that are longer than the max length of the field
Methods
count(**kwargs)Returns number of rows/entities.
delete(expr, **kwargs)Delete vectors from the collection using expressions.
delete_by_keys(keys, **kwargs)Delete vectors by keys from the collection.
describe(**kwargs)Provides a description of the collection.
drop(**kwargs)Drop a collection, index, or partition in the Milvus vector database.
insert(data, **kwargs)Insert data into the vector database.
insert_dataframe(df, **kwargs)Insert a dataframe entires into the vector database.
query(query, **kwargs)Query data in a collection in the Milvus vector database.
retrieve_by_keys(keys, **kwargs)Retrieve the inserted vectors using their primary keys.
similarity_search(embeddings[, k])Perform a similarity search within the collection.
update(data, **kwargs)Update data in the collection.
- count(**kwargs)[source]#
Returns number of rows/entities.
- Parameters:
- **kwargsdict[str, typing.Any]
Additional keyword arguments for the count operation.
- Returns:
- int
Returns number of entities in the collection.
- delete(expr, **kwargs)[source]#
Delete vectors from the collection using expressions.
- Parameters:
- exprstr
Delete expression.
- **kwargsdict[str, typing.Any]
Extra keyword arguments specific to the vector database implementation.
- Returns:
- dict[str, typing.Any]
Returns result of the given keys that are deleted from the collection.
- delete_by_keys(keys, **kwargs)[source]#
Delete vectors by keys from the collection.
- Parameters:
- keysint | str | list
Primary keys to delete vectors.
- **kwargsdict[str, typing.Any]
Extra keyword arguments specific to the vector database implementation.
- Returns:
- typing.Any
Returns result of the given keys that are deleted from the collection.
- describe(**kwargs)[source]#
Provides a description of the collection.
- Parameters:
- **kwargsdict[str, typing.Any]
Extra keyword arguments specific to the vector database implementation.
- Returns:
- dict
Returns response content as a dictionary.
- drop(**kwargs)[source]#
Drop a collection, index, or partition in the Milvus vector database.
This function allows you to drop a collection.
- Parameters:
- **kwargsdict
Additional keyword arguments for specifying the type and partition name (if applicable).
- insert(data, **kwargs)[source]#
Insert data into the vector database.
- Parameters:
- datalist[list] | list[dict]
Data to be inserted into the collection.
- **kwargsdict[str, typing.Any]
Extra keyword arguments specific to the vector database implementation.
- Returns:
- dict
Returns response content as a dictionary.
- insert_dataframe(df, **kwargs)[source]#
Insert a dataframe entires into the vector database.
- Parameters:
- dfDataFrameType
Dataframe to be inserted into the collection.
- **kwargsdict[str, typing.Any]
Extra keyword arguments specific to the vector database implementation.
- Returns:
- dict
Returns response content as a dictionary.
- query(query, **kwargs)[source]#
Query data in a collection in the Milvus vector database.
This method performs a search operation in the specified collection/partition in the Milvus vector database.
- Parameters:
- querystr, optional
The search query, which can be a filter expression, by default None.
- **kwargsdict
Additional keyword arguments for the search operation.
- Returns:
- typing.Any
The search result, which can vary depending on the query and options.
- Raises:
- retrieve_by_keys(keys, **kwargs)[source]#
Retrieve the inserted vectors using their primary keys.
- Parameters:
- keysint | str | list
Primary keys to get vectors for. Depending on pk_field type it can be int or str or a list of either.
- **kwargsdict[str, typing.Any]
Additional keyword arguments for the retrieval operation.
- Returns:
- list[typing.Any]
Returns result rows of the given keys from the collection.
- async similarity_search(
- embeddings,
- k=4,
- **kwargs,
Perform a similarity search within the collection.
- Parameters:
- embeddingslist[list[float]]
Embeddings for which to perform the similarity search.
- kint, optional
The number of nearest neighbors to return, by default 4.
- **kwargsdict[str, typing.Any]
Extra keyword arguments specific to the vector database implementation.
- Returns:
- list[dict]
Returns a list of dictionaries representing the results of the similarity search.