NVIDIA Morpheus (24.10.01)
(Latest Version)

morpheus.stages.postprocess.timeseries_stage

Functions

calc_bin(obj, time0, resolution_sec) Calculates the bin spacing between the start and stop timestamp at a specified resolution.
fftAD(signalvalues[, percentile, zthresh, ...]) Detect anomalies with fast fourier transform.
round_seconds(obj) Returns the given timestamp with rounded seconds.
to_periodogram(signal_cp) Returns periodogram of signal for finding frequencies that have high energy.
zscore(data) Calculate z score of cupy.ndarray.

Classes

TimeSeriesStage(c[, resolution, min_window, ...]) Perform time series anomaly detection and add prediction.
calc_bin(obj, time0, resolution_sec)[source]

Calculates the bin spacing between the start and stop timestamp at a specified resolution.

fftAD(signalvalues, percentile=90, zthresh=8, lowpass=None)[source]

Detect anomalies with fast fourier transform.

Parameters
signalvaluescupy.ndarray

Values of time signal (real valued).

percentileint, optional

Filtering percentile for spectral density based filtering, by default 90.

zthreshint, optional

Z-score threshold, can be tuned for datasets and sensitivity, by default 8.

lowpass_type_, optional

Filtering percentile for frequency based filtering, by default None.

Returns
cupy.ndarray

Binary vector whether each point is anomalous.

round_seconds(obj)[source]

Returns the given timestamp with rounded seconds.

Parameters
objpd.Timestamp

Timestamp obj.

Returns
pd.Timestamp

Timestamp with rounded seconds.

to_periodogram(signal_cp)[source]

Returns periodogram of signal for finding frequencies that have high energy.

Parameters
signal_cpcupy.ndarray

Signal (time domain).

Returns
cupy.ndarray

CuPy array representing periodogram.

zscore(data)[source]

Calculate z score of cupy.ndarray.

Previous morpheus.stages.postprocess.serialize_stage.SerializeStage
Next morpheus.stages.postprocess.timeseries_stage.TimeSeriesStage
© Copyright 2024, NVIDIA. Last updated on Dec 3, 2024.