DFP Training Module

This module function is responsible for training the model.

Parameter

Type

Description

Example Value

Default Value

feature_columns list List of feature columns to train on [“column1”, “column2”, “column3”] -
epochs int Number of epochs to train for 50 -
model_kwargs dict Keyword arguments to pass to the model {“encoder_layers”: [64, 32], “decoder_layers”: [32, 64], “activation”: “relu”, “swap_p”: 0.1, “lr”: 0.001, “lr_decay”: 0.9, “batch_size”: 32, “verbose”: 1, “optimizer”: “adam”, “scalar”: “min_max”, “min_cats”: 10, “progress_bar”: false, “device”: “cpu”} -
validation_size float Size of the validation set 0.1 -
Copy
Copied!
            

{ "feature_columns": [ "column1", "column2", "column3" ], "epochs": 50, "model_kwargs": { "encoder_layers": [ 64, 32 ], "decoder_layers": [ 32, 64 ], "activation": "relu", "swap_p": 0.1, "lr": 0.001, "lr_decay": 0.9, "batch_size": 32, "verbose": 1, "optimizer": "adam", "scalar": "min_max", "min_cats": 10, "progress_bar": false, "device": "cpu" }, "validation_size": 0.1 }

Previous DFP Training Pipe Module
Next Pre-inference Module
© Copyright 2023, NVIDIA. Last updated on Feb 2, 2024.