Source code for modulus.eq.pdes.turbulence_zero_eq
"""Zero Equation Turbulence model
References:
https://www.eureka.im/954.html
https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/SimCFD-Learning/files/GUID-BBA4E008-8346-465B-9FD3-D193CF108AF0-htm.html
"""
from sympy import Symbol, Function, sqrt, Number, Min
from modulus.eq.pde import PDE
[docs]class ZeroEquation(PDE):
"""
Zero Equation Turbulence model
Parameters
==========
nu : float
The kinematic viscosity of the fluid.
max_distance : float
The maximum wall distance in the flow field.
rho : float, Sympy Symbol/Expr, str
The density. If `rho` is a str then it is
converted to Sympy Function of form 'rho(x,y,z,t)'.
If 'rho' is a Sympy Symbol or Expression then this
is substituted into the equation. Default is 1.
dim : int
Dimension of the Zero Equation Turbulence model (2 or 3).
Default is 3.
time : bool
If time-dependent equations or not. Default is True.
Example
========
>>> zeroEq = ZeroEquation(nu=0.1, max_distance=2.0, dim=2)
>>> kEp.pprint()
nu: sqrt((u__y + v__x)**2 + 2*u__x**2 + 2*v__y**2)
*Min(0.18, 0.419*normal_distance)**2 + 0.1
"""
name = "ZeroEquation"
def __init__(
self, nu, max_distance, rho=1, dim=3, time=True
): # TODO add density into model
# set params
self.dim = dim
self.time = time
# model coefficients
self.max_distance = max_distance
self.karman_constant = 0.419
self.max_distance_ratio = 0.09
# coordinates
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
# time
t = Symbol("t")
# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
if self.dim == 2:
input_variables.pop("z")
if not self.time:
input_variables.pop("t")
# velocity componets
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
if self.dim == 3:
w = Function("w")(*input_variables)
else:
w = Number(0)
# density
if type(rho) is str:
rho = Function(rho)(*input_variables)
elif type(rho) in [float, int]:
rho = Number(rho)
# wall distance
normal_distance = Function("sdf")(*input_variables)
# mixing length
mixing_length = Min(
self.karman_constant * normal_distance,
self.max_distance_ratio * self.max_distance,
)
G = (
2 * u.diff(x) ** 2
+ 2 * v.diff(y) ** 2
+ 2 * w.diff(z) ** 2
+ (u.diff(y) + v.diff(x)) ** 2
+ (u.diff(z) + w.diff(x)) ** 2
+ (v.diff(z) + w.diff(y)) ** 2
)
# set equations
self.equations = {}
self.equations["nu"] = nu + rho * mixing_length**2 * sqrt(G)