"""Wave equation
Reference: https://en.wikipedia.org/wiki/Wave_equation
"""
from sympy import Symbol, Function, Number
from modulus.eq.pde import PDE
[docs]class WaveEquation(PDE):
"""
Wave equation
Parameters
==========
u : str
The dependent variable.
c : float, Sympy Symbol/Expr, str
Wave speed coefficient. If `c` is a str then it is
converted to Sympy Function of form 'c(x,y,z,t)'.
If 'c' is a Sympy Symbol or Expression then this
is substituted into the equation.
dim : int
Dimension of the wave equation (1, 2, or 3). Default is 2.
time : bool
If time-dependent equations or not. Default is True.
mixed_form: bool
If True, use the mixed formulation of the wave equation.
Examples
========
>>> we = WaveEquation(c=0.8, dim=3)
>>> we.pprint()
wave_equation: u__t__t - 0.64*u__x__x - 0.64*u__y__y - 0.64*u__z__z
>>> we = WaveEquation(c='c', dim=2, time=False)
>>> we.pprint()
wave_equation: -c**2*u__x__x - c**2*u__y__y - 2*c*c__x*u__x - 2*c*c__y*u__y
"""
name = "WaveEquation"
def __init__(self, u="u", c="c", dim=3, time=True, mixed_form=False):
# set params
self.u = u
self.dim = dim
self.time = time
self.mixed_form = mixed_form
# coordinates
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
# time
t = Symbol("t")
# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
if self.dim == 1:
input_variables.pop("y")
input_variables.pop("z")
elif self.dim == 2:
input_variables.pop("z")
if not self.time:
input_variables.pop("t")
# Scalar function
assert type(u) == str, "u needs to be string"
u = Function(u)(*input_variables)
# wave speed coefficient
if type(c) is str:
c = Function(c)(*input_variables)
elif type(c) in [float, int]:
c = Number(c)
# set equations
self.equations = {}
if not self.mixed_form:
self.equations["wave_equation"] = (
u.diff(t, 2)
- c**2 * u.diff(x, 2)
- c**2 * u.diff(y, 2)
- c**2 * u.diff(z, 2)
)
elif self.mixed_form:
u_x = Function("u_x")(*input_variables)
u_y = Function("u_y")(*input_variables)
if self.dim == 3:
u_z = Function("u_z")(*input_variables)
else:
u_z = Number(0)
if self.time:
u_t = Function("u_t")(*input_variables)
else:
u_t = Number(0)
self.equations["wave_equation"] = (
u_t.diff(t)
- c**2 * u_x.diff(x)
- c**2 * u_y.diff(y)
- c**2 * u_z.diff(z)
)
self.equations["compatibility_u_x"] = u.diff(x) - u_x
self.equations["compatibility_u_y"] = u.diff(y) - u_y
self.equations["compatibility_u_z"] = u.diff(z) - u_z
self.equations["compatibility_u_xy"] = u_x.diff(y) - u_y.diff(x)
self.equations["compatibility_u_xz"] = u_x.diff(z) - u_z.diff(x)
self.equations["compatibility_u_yz"] = u_y.diff(z) - u_z.diff(y)
if self.dim == 2:
self.equations.pop("compatibility_u_z")
self.equations.pop("compatibility_u_xz")
self.equations.pop("compatibility_u_yz")
[docs]class HelmholtzEquation(PDE):
name = "HelmholtzEquation"
def __init__(self, u, k, dim=3, mixed_form=False):
"""
Helmholtz equation
Parameters
==========
u : str
The dependent variable.
k : float, Sympy Symbol/Expr, str
Wave number. If `k` is a str then it is
converted to Sympy Function of form 'k(x,y,z,t)'.
If 'k' is a Sympy Symbol or Expression then this
is substituted into the equation.
dim : int
Dimension of the wave equation (1, 2, or 3). Default is 2.
mixed_form: bool
If True, use the mixed formulation of the Helmholtz equation.
"""
# set params
self.u = u
self.dim = dim
self.mixed_form = mixed_form
# coordinates
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
# make input variables
input_variables = {"x": x, "y": y, "z": z}
if self.dim == 1:
input_variables.pop("y")
input_variables.pop("z")
elif self.dim == 2:
input_variables.pop("z")
# Scalar function
assert type(u) == str, "u needs to be string"
u = Function(u)(*input_variables)
# wave speed coefficient
if type(k) is str:
k = Function(k)(*input_variables)
elif type(k) in [float, int]:
k = Number(k)
# set equations
self.equations = {}
if not self.mixed_form:
self.equations["helmholtz"] = -(
k**2 * u + u.diff(x, 2) + u.diff(y, 2) + u.diff(z, 2)
)
elif self.mixed_form:
u_x = Function("u_x")(*input_variables)
u_y = Function("u_y")(*input_variables)
if self.dim == 3:
u_z = Function("u_z")(*input_variables)
else:
u_z = Number(0)
self.equations["helmholtz"] = -(
k**2 * u + u_x.diff(x) + u_y.diff(y) + u_z.diff(z)
)
self.equations["compatibility_u_x"] = u.diff(x) - u_x
self.equations["compatibility_u_y"] = u.diff(y) - u_y
self.equations["compatibility_u_z"] = u.diff(z) - u_z
self.equations["compatibility_u_xy"] = u_x.diff(y) - u_y.diff(x)
self.equations["compatibility_u_xz"] = u_x.diff(z) - u_z.diff(x)
self.equations["compatibility_u_yz"] = u_y.diff(z) - u_z.diff(y)
if self.dim == 2:
self.equations.pop("compatibility_u_z")
self.equations.pop("compatibility_u_xz")
self.equations.pop("compatibility_u_yz")