deeplearning/modulus/modulus-v2209/_modules/modulus/utils/sympy/numpy_printer.html
Source code for modulus.utils.sympy.numpy_printer
"""
Helper functions for converting sympy equations to numpy
"""
import types
import inspect
import numpy as np
import symengine as se
import sympy as sp
NP_LAMBDA_STORE = {}
[docs]def np_lambdify(f, r):
"""
generates a numpy function from a sympy equation
Parameters
----------
f : Sympy Exp, float, int, bool or list of the previous
the equation to convert to a numpy function.
If float, int, or bool this gets converted
to a constant function of value `f`. If f is a list
then output for each element in list is is
concatenated on axis -1.
r : list, dict
A list of the arguments for `f`. If dict then
the keys of the dict are used.
Returns
-------
np_f : numpy function
"""
# possibly lambdify list of f
if not isinstance(f, list):
f = [f]
# convert r to a list if dictionary
# break up any tuples to elements in list
if isinstance(r, dict):
r = list(r.keys())
no_tuple_r = []
for key in r:
if isinstance(key, tuple):
for k in key:
no_tuple_r.append(k)
else:
no_tuple_r.append(key)
# lambidfy all functions in list
lambdify_f = []
for f_i in f:
# check if already a numpy function
if isinstance(f_i, types.FunctionType):
# add r inputs to function
args = inspect.getargspec(f_i).args
def lambdify_f_i(**x):
return f_i(**{key: x[key] for key in args})
else:
# check if already lambdified equation
if (f_i, tuple(no_tuple_r)) in NP_LAMBDA_STORE.keys():
lambdify_f_i = NP_LAMBDA_STORE[(f_i, tuple(no_tuple_r))]
else: # if not lambdify it
try:
if not isinstance(f_i, bool):
f_i = float(f_i)
except:
pass
if isinstance(f_i, (float, int)): # constant function
def loop_lambda(constant):
return (
lambda **x: np.zeros_like(next(iter(x.items()))[1])
+ constant
)
lambdify_f_i = loop_lambda(f_i)
elif type(f_i) in [
type((se.Symbol("x") > 0).subs(se.Symbol("x"), 1)),
type((se.Symbol("x") > 0).subs(se.Symbol("x"), -1)),
bool,
]: # TODO hacky sympy boolian check
def loop_lambda(constant):
if constant:
return lambda **x: np.ones_like(
next(iter(x.items()))[1], dtype=bool
)
else:
return lambda **x: np.zeros_like(
next(iter(x.items()))[1], dtype=bool
)
lambdify_f_i = loop_lambda(f_i)
else:
try: # first try to compile with Symengine
kk = []
for k in no_tuple_r:
if isinstance(k, str):
kk.append(se.Symbol(k))
else:
kk.append(k)
kk = [se.Symbol(name) for name in sorted([x.name for x in kk])]
se_lambdify_f_i = se.lambdify(kk, [f_i], backend="llvm")
def lambdify_f_i(**x):
if len(x) == 1:
v = list(x.values())[0]
else:
v = np.stack(
[v for v in dict(sorted(x.items())).values()],
axis=-1,
)
out = se_lambdify_f_i(v)
if isinstance(out, list):
out = np.concatenate(out, axis=-1)
return out
except: # fall back on older SymPy compile
sp_lambdify_f_i = sp.lambdify(
[k for k in no_tuple_r], f_i, [NP_SYMPY_PRINTER, "numpy"]
)
def lambdify_f_i(**x):
v = sp_lambdify_f_i(**x)
if isinstance(v, list):
v = np.concatenate(v, axis=-1)
return v
# add new lambdified function to dictionary
NP_LAMBDA_STORE[(f_i, tuple(no_tuple_r))] = lambdify_f_i
# add new list of lambda functions
lambdify_f.append(lambdify_f_i)
# construct master lambda function for all
def loop_grouped_lambda(lambdify_f):
def grouped_lambda(**invar):
output = []
for lambdify_f_i in lambdify_f:
output.append(lambdify_f_i(**invar))
return np.concatenate(output, axis=-1)
return grouped_lambda
return loop_grouped_lambda(lambdify_f)def _xor_np(x):
return np.logical_xor(x)
def _min_np(x):
return_value = x[0]
for value in x:
return_value = np.minimum(return_value, value)
return return_value
def _max_np(x):
return_value = x[0]
for value in x:
return_value = np.maximum(return_value, value)
return return_value
def _heaviside_np(x):
return np.heaviside(x, 0)
def _equal_np(x, y):
return np.isclose(x, y)
NP_SYMPY_PRINTER = {
"amin": _min_np,
"amax": _max_np,
"Heaviside": _heaviside_np,
"equal": _equal_np,
"Xor": _xor_np,
}
SYMENGINE_BLACKLIST = [sp.Heaviside, sp.DiracDelta]