morpheus.models.dfencoder.ae_module.AEModule

class AEModule(*args, **kwargs)[source]

Bases: torch.nn.Module

Auto Encoder Pytorch Module.

Methods

__call__(*args, **kwargs)

Call self as a function.

build(numeric_fts, binary_fts, categorical_fts)

Constructs the autoencoder model.

decode(x[, layers])

Decodes the input using the decoder layers and computes the outputs.

encode(x[, layers])

Encodes the input using the encoder layers.

forward(input)

Passes the input through the model and returns the outputs.

build(numeric_fts, binary_fts, categorical_fts)[source]

Constructs the autoencoder model.

Parameters:
numeric_ftsList[str]

The names of the numeric features.

binary_ftsList[str]

The names of the binary features.

categorical_ftsDict[str, Dict[str, List[str]]]

The dictionary mapping categorical feature names to dictionaries containing the categories of the feature.

decode(x, layers=None)[source]

Decodes the input using the decoder layers and computes the outputs.

Parameters:
xtorch.Tensor

The encoded input tensor to decode.

layersint, optional

The number of layers to use for decoding. Defaults to None, will use all decoder layers.

Returns:
tuple of Union[torch.Tensor, List[torch.Tensor]]

A tuple containing the numeric (Tensor), binary (Tensor), and categorical outputs (List[torch.Tensor]) of the model.

encode(x, layers=None)[source]

Encodes the input using the encoder layers.

Parameters:
xtorch.Tensor

The input tensor to encode.

layersint, optional

The number of layers to use for encoding. Defaults to None, will use all encoder layers.

Returns:
torch.Tensor

The encoded output tensor.

forward(input)[source]

Passes the input through the model and returns the outputs.

Parameters:
inputtorch.Tensor

The input tensor.

Returns:
tuple of Union[torch.Tensor, List[torch.Tensor]]

A tuple containing the numeric (Tensor), binary (Tensor), and categorical outputs (List[torch.Tensor]) of the model.

© Copyright 2023, NVIDIA. Last updated on Aug 23, 2023.