NVIDIA Morpheus (24.10.01)
(Latest Version)

morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage

class DFPMLFlowModelWriterStage(c, model_name_formatter='dfp-{user_id}', experiment_name_formatter='/dfp-models/{reg_model_name}', databricks_permissions=None, timeout=1.0)[source]

Bases: <a href="morpheus.pipeline.pass_thru_type_mixin.PassThruTypeMixin.html#morpheus.pipeline.pass_thru_type_mixin.PassThruTypeMixin">morpheus.pipeline.pass_thru_type_mixin.PassThruTypeMixin</a>, <a href="morpheus.pipeline.single_port_stage.SinglePortStage.html#morpheus.pipeline.single_port_stage.SinglePortStage">morpheus.pipeline.single_port_stage.SinglePortStage</a>

This stage publishes trained models into MLflow.

Parameters
c<a href="morpheus.config.Config.html#morpheus.config.Config">morpheus.config.Config</a>

Pipeline configuration instance.

model_name_formatterstr, optional

Format string to control the name of models stored in MLflow. Currently available field names are: user_id and user_md5 which is an md5 hexadecimal digest as returned by hash.hexdigest.

experiment_name_formatterstr, optional

Format string to control the experiment name for models stored in MLflow. Currently available field names are: user_id, user_md5 and reg_model_name which is the model name as defined by model_name_formatter once the field names have been applied.

databricks_permissionsdict, optional

When not <a href="https://docs.python.org/3/library/constants.html#None">None</a> sets permissions needed when using a databricks hosted MLflow server.

timeoutfloat, optional

Timeout for get requests.

Attributes
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.has_multi_input_ports">has_multi_input_ports</a>

Indicates if this stage has multiple input ports.

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.has_multi_output_ports">has_multi_output_ports</a>

Indicates if this stage has multiple output ports.

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.input_ports">input_ports</a>

Input ports to this stage.

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.is_built">is_built</a>

Indicates if this stage has been built.

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.is_pre_built">is_pre_built</a>

Indicates if this stage has been built.

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.name">name</a>

Stage name

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.output_ports">output_ports</a>

Output ports from this stage.

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.unique_name">unique_name</a>

Unique name of stage.

Methods

<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.accepted_types">accepted_types</a>() Types accepted by this stage
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.build">build</a>(builder[, do_propagate]) Build this stage.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.can_build">can_build</a>([check_ports]) Determines if all inputs have been built allowing this node to be built.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.can_pre_build">can_pre_build</a>([check_ports]) Determines if all inputs have been built allowing this node to be built.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.get_all_input_stages">get_all_input_stages</a>() Get all input stages to this stage.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.get_all_inputs">get_all_inputs</a>() Get all input senders to this stage.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.get_all_output_stages">get_all_output_stages</a>() Get all output stages from this stage.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.get_all_outputs">get_all_outputs</a>() Get all output receivers from this stage.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.get_needed_columns">get_needed_columns</a>() Stages which need to have columns inserted into the dataframe, should populate the self._needed_columns dictionary with mapping of column names to <a href="morpheus.common.html#morpheus.common.TypeId">morpheus.common.TypeId</a>.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.join">join</a>() Awaitable method that stages can implement this to perform cleanup steps when pipeline is stopped.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.start_async">start_async</a>() This function is called along with on_start during stage initialization.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.stop">stop</a>() Stages can implement this to perform cleanup steps when pipeline is stopped.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.supported_execution_modes">supported_execution_modes</a>() Returns a tuple of supported execution modes of this stage.
<a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.supports_cpp_node">supports_cpp_node</a>() Whether this stage supports a C++ node
compute_schema
_build(builder, input_nodes)[source]

This function is responsible for constructing this stage’s internal mrc.SegmentObject object. The input of this function contains the returned value from the upstream stage.

The input values are the mrc.Builder for this stage and a list of parent nodes.

Parameters
buildermrc.Builder

mrc.Builder object for the pipeline. This should be used to construct/attach the internal mrc.SegmentObject.

input_nodeslist[mrc.SegmentObject]

List containing the input mrc.SegmentObject objects.

Returns
list[mrc.SegmentObject]

List of tuples containing the output mrc.SegmentObject object from this stage.

accepted_types()[source]

Types accepted by this stage

build(builder, do_propagate=True)[source]

Build this stage.

Parameters
buildermrc.Builder

MRC segment for this stage.

do_propagatebool, optional

Whether to propagate to build output stages, by default True.

can_build(check_ports=False)[source]

Determines if all inputs have been built allowing this node to be built.

Parameters
check_portsbool, optional

Check if we can build based on the input ports, by default False.

Returns
bool

True if we can build, False otherwise.

can_pre_build(check_ports=False)[source]

Determines if all inputs have been built allowing this node to be built.

Parameters
check_portsbool, optional

Check if we can build based on the input ports, by default False.

Returns
bool

True if we can build, False otherwise.

compute_schema(schema)[source]

Compute the schema for this stage based on the incoming schema from upstream stages.

Incoming schema and type information from upstream stages is available via the schema.input_schemas and schema.input_types properties.

Derived classes need to override this method, can set the output type(s) on schema by calling set_type for all output ports. For example a simple pass-thru stage might perform the following:

Copy
Copied!
            

>>> for (port_idx, port_schema) in enumerate(schema.input_schemas): ... schema.output_schemas[port_idx].set_type(port_schema.get_type()) >>>

If the port types in upstream_schema are incompatible the stage should raise a <a href="https://docs.python.org/3/library/exceptions.html#RuntimeError">RuntimeError</a>.

get_all_input_stages()[source]

Get all input stages to this stage.

Returns
list[morpheus.pipeline.pipeline.StageBase]

All input stages.

get_all_inputs()[source]

Get all input senders to this stage.

Returns
list[morpheus.pipeline.pipeline.Sender]

All input senders.

get_all_output_stages()[source]

Get all output stages from this stage.

Returns
list[morpheus.pipeline.pipeline.StageBase]

All output stages.

get_all_outputs()[source]

Get all output receivers from this stage.

Returns
list[morpheus.pipeline.pipeline.Receiver]

All output receivers.

get_needed_columns()[source]

Stages which need to have columns inserted into the dataframe, should populate the self._needed_columns dictionary with mapping of column names to <a href="morpheus.common.html#morpheus.common.TypeId">morpheus.common.TypeId</a>. This will ensure that the columns are allocated and populated with null values.

property has_multi_input_ports: bool

Indicates if this stage has multiple input ports.

Returns
bool

True if stage has multiple input ports, False otherwise.

property has_multi_output_ports: bool

Indicates if this stage has multiple output ports.

Returns
bool

True if stage has multiple output ports, False otherwise.

property input_ports: list[morpheus.pipeline.receiver.Receiver]

Input ports to this stage.

Returns
list[morpheus.pipeline.pipeline.Receiver]

Input ports to this stage.

property is_built: bool

Indicates if this stage has been built.

Returns
bool

True if stage is built, False otherwise.

property is_pre_built: bool

Indicates if this stage has been built.

Returns
bool

True if stage is built, False otherwise.

async join()[source]

Awaitable method that stages can implement this to perform cleanup steps when pipeline is stopped. Typically this is called after <a href="#morpheus_dfp.stages.dfp_mlflow_model_writer.DFPMLFlowModelWriterStage.stop">stop</a> during a graceful shutdown, but may not be called if the pipeline is terminated.

property name: str

Stage name

property output_ports: list[morpheus.pipeline.sender.Sender]

Output ports from this stage.

Returns
list[morpheus.pipeline.pipeline.Sender]

Output ports from this stage.

async start_async()[source]

This function is called along with on_start during stage initialization. Allows stages to utilize the asyncio loop if needed.

stop()[source]

Stages can implement this to perform cleanup steps when pipeline is stopped.

supported_execution_modes()[source]

Returns a tuple of supported execution modes of this stage. By default this returns (ExecutionMode.GPU,). Subclasses can override this method to specify different execution modes.

For most stages the values will be static, and this can be accomplished by making use of either the CpuOnlyMixin or GpuAndCpuMixin mixins.

However, complex stages may choose to make this decision at runtime, in which case this method should be overridden. directly within the stage class.

supports_cpp_node()[source]

Whether this stage supports a C++ node

property unique_name: str

Unique name of stage. Generated by appending stage id to stage name.

Returns
str

Unique name of stage.

Previous morpheus_dfp.stages.dfp_mlflow_model_writer
Next morpheus_dfp.stages.dfp_postprocessing_stage
© Copyright 2024, NVIDIA. Last updated on Dec 3, 2024.