morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage
- class DFPRollingWindowStage(c, min_history, min_increment, max_history, cache_dir='./.cache/dfp')[source]
Bases:
<a href="morpheus.pipeline.single_port_stage.SinglePortStage.html#morpheus.pipeline.single_port_stage.SinglePortStage">morpheus.pipeline.single_port_stage.SinglePortStage</a>
This stage groups incomming messages into a rolling time window, emitting them only when the history requirements are met specified by the
min_history
,min_increment
andmax_history
parameters.Incoming data is cached to disk (
cache_dir
) to reduce memory ussage. This computes a row hash for the first and last rows of the incomingDataFrame
as such all data contained must be hashable, any non-hashable values such aslists
should be dropped or converted into hashable types in theDFPFileToDataFrameStage
.- Parameters
- c
<a href="morpheus.config.Config.html#morpheus.config.Config">morpheus.config.Config</a>
Pipeline configuration instance.
- min_historyint
Exclude users with less than
min_history
records, setting this to1
effectively disables this feature.- min_incrementint
Exclude incoming batches for users where less than
min_increment
new records have been added since the last batch, setting this to0
effectively disables this feature.- max_historyint or str
When not
<a href="https://docs.python.org/3/library/constants.html#None">None</a>
, include up tomax_history
records. Whenmax_history
is an int, then the lastmax_history
records will be included. Whenmax_history
is a<a href="https://docs.python.org/3/library/stdtypes.html#str">str</a>
it is assumed to represent a duration parsable by [pandas.Timedelta
](https://pandas.pydata.org/docs/reference/api/pandas.Timedelta.html) and only those records within the window of [latest timestamp -max_history
, latest timestamp] will be included.- cache_dirstr
Path to cache directory, cached items will be stored in a subdirectory under this directory named
rolling-user-data
. This directory, along withcache_dir
will be created if it does not already exist.
- c
- Attributes
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.has_multi_input_ports">has_multi_input_ports</a>
Indicates if this stage has multiple input ports.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.has_multi_output_ports">has_multi_output_ports</a>
Indicates if this stage has multiple output ports.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.input_ports">input_ports</a>
Input ports to this stage.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.is_built">is_built</a>
Indicates if this stage has been built.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.is_pre_built">is_pre_built</a>
Indicates if this stage has been built.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.name">name</a>
Stage name.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.output_ports">output_ports</a>
Output ports from this stage.
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.unique_name">unique_name</a>
Unique name of stage.
Methods
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.accepted_types">accepted_types</a>
()Input types accepted by this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.build">build</a>
(builder[, do_propagate])Build this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.can_build">can_build</a>
([check_ports])Determines if all inputs have been built allowing this node to be built. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.can_pre_build">can_pre_build</a>
([check_ports])Determines if all inputs have been built allowing this node to be built. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.compute_schema">compute_schema</a>
(schema)Compute the schema for this stage based on the incoming schema from upstream stages. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.get_all_input_stages">get_all_input_stages</a>
()Get all input stages to this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.get_all_inputs">get_all_inputs</a>
()Get all input senders to this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.get_all_output_stages">get_all_output_stages</a>
()Get all output stages from this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.get_all_outputs">get_all_outputs</a>
()Get all output receivers from this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.get_needed_columns">get_needed_columns</a>
()Stages which need to have columns inserted into the dataframe, should populate the self._needed_columns
dictionary with mapping of column names to<a href="morpheus.common.html#morpheus.common.TypeId">morpheus.common.TypeId</a>
.<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.join">join</a>
()Awaitable method that stages can implement this to perform cleanup steps when pipeline is stopped. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.on_data">on_data</a>
(message)Emits a new message containing the rolling window for the user if and only if the history requirments are met, returns <a href="https://docs.python.org/3/library/constants.html#None">None</a>
otherwise.<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.start_async">start_async</a>
()This function is called along with on_start during stage initialization. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.stop">stop</a>
()Stages can implement this to perform cleanup steps when pipeline is stopped. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.supported_execution_modes">supported_execution_modes</a>
()Returns a tuple of supported execution modes of this stage. <a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.supports_cpp_node">supports_cpp_node</a>
()Whether this stage supports a C++ node. - _build(builder, input_nodes)[source]
This function is responsible for constructing this stage’s internal
mrc.SegmentObject
object. The input of this function contains the returned value from the upstream stage.The input values are the
mrc.Builder
for this stage and a list of parent nodes.- Parameters
- builder
mrc.Builder
mrc.Builder
object for the pipeline. This should be used to construct/attach the internalmrc.SegmentObject
.- input_nodes
list[mrc.SegmentObject]
List containing the input
mrc.SegmentObject
objects.
- builder
- Returns
list[mrc.SegmentObject]
List of tuples containing the output
mrc.SegmentObject
object from this stage.
- accepted_types()[source]
Input types accepted by this stage.
- build(builder, do_propagate=True)[source]
Build this stage.
- Parameters
- builder
mrc.Builder
MRC segment for this stage.
- do_propagatebool, optional
Whether to propagate to build output stages, by default True.
- builder
- can_build(check_ports=False)[source]
Determines if all inputs have been built allowing this node to be built.
- Parameters
- check_portsbool, optional
Check if we can build based on the input ports, by default False.
- Returns
- bool
True if we can build, False otherwise.
- can_pre_build(check_ports=False)[source]
Determines if all inputs have been built allowing this node to be built.
- Parameters
- check_portsbool, optional
Check if we can build based on the input ports, by default False.
- Returns
- bool
True if we can build, False otherwise.
- compute_schema(schema)[source]
Compute the schema for this stage based on the incoming schema from upstream stages.
Incoming schema and type information from upstream stages is available via the
schema.input_schemas
andschema.input_types
properties.Derived classes need to override this method, can set the output type(s) on
schema
by callingset_type
for all output ports. For example a simple pass-thru stage might perform the following:>>> for (port_idx, port_schema) in enumerate(schema.input_schemas): ... schema.output_schemas[port_idx].set_type(port_schema.get_type()) >>>
If the port types in
upstream_schema
are incompatible the stage should raise a<a href="https://docs.python.org/3/library/exceptions.html#RuntimeError">RuntimeError</a>
.
- get_all_input_stages()[source]
Get all input stages to this stage.
- Returns
- list[
morpheus.pipeline.pipeline.StageBase
] All input stages.
- list[
- get_all_inputs()[source]
Get all input senders to this stage.
- Returns
- list[
morpheus.pipeline.pipeline.Sender
] All input senders.
- list[
- get_all_output_stages()[source]
Get all output stages from this stage.
- Returns
- list[
morpheus.pipeline.pipeline.StageBase
] All output stages.
- list[
- get_all_outputs()[source]
Get all output receivers from this stage.
- Returns
- list[
morpheus.pipeline.pipeline.Receiver
] All output receivers.
- list[
- get_needed_columns()[source]
Stages which need to have columns inserted into the dataframe, should populate the
self._needed_columns
dictionary with mapping of column names to<a href="morpheus.common.html#morpheus.common.TypeId">morpheus.common.TypeId</a>
. This will ensure that the columns are allocated and populated with null values.
- property has_multi_input_ports: bool
Indicates if this stage has multiple input ports.
- Returns
- bool
True if stage has multiple input ports, False otherwise.
- property has_multi_output_ports: bool
Indicates if this stage has multiple output ports.
- Returns
- bool
True if stage has multiple output ports, False otherwise.
- property input_ports: list[morpheus.pipeline.receiver.Receiver]
Input ports to this stage.
- Returns
- list[
morpheus.pipeline.pipeline.Receiver
] Input ports to this stage.
- list[
- property is_built: bool
Indicates if this stage has been built.
- Returns
- bool
True if stage is built, False otherwise.
- property is_pre_built: bool
Indicates if this stage has been built.
- Returns
- bool
True if stage is built, False otherwise.
- async join()[source]
Awaitable method that stages can implement this to perform cleanup steps when pipeline is stopped. Typically this is called after
<a href="#morpheus_dfp.stages.dfp_rolling_window_stage.DFPRollingWindowStage.stop">stop</a>
during a graceful shutdown, but may not be called if the pipeline is terminated.
- property name: str
Stage name.
- on_data(message)[source]
Emits a new message containing the rolling window for the user if and only if the history requirments are met, returns
<a href="https://docs.python.org/3/library/constants.html#None">None</a>
otherwise.
- property output_ports: list[morpheus.pipeline.sender.Sender]
Output ports from this stage.
- Returns
- list[
morpheus.pipeline.pipeline.Sender
] Output ports from this stage.
- list[
- async start_async()[source]
This function is called along with on_start during stage initialization. Allows stages to utilize the asyncio loop if needed.
- stop()[source]
Stages can implement this to perform cleanup steps when pipeline is stopped.
- supported_execution_modes()[source]
Returns a tuple of supported execution modes of this stage. By default this returns
(ExecutionMode.GPU,)
. Subclasses can override this method to specify different execution modes.For most stages the values will be static, and this can be accomplished by making use of either the
CpuOnlyMixin
orGpuAndCpuMixin
mixins.However, complex stages may choose to make this decision at runtime, in which case this method should be overridden. directly within the stage class.
- supports_cpp_node()[source]
Whether this stage supports a C++ node.
- property unique_name: str
Unique name of stage. Generated by appending stage id to stage name.
- Returns
- str
Unique name of stage.