NVIDIA Morpheus (24.06)
(Latest Version)

ABP Detection Example Using Morpheus

Environment

Supported

Notes

Conda

Morpheus Docker Container Requires launching Triton on the host
Morpheus Release Container Requires launching Triton on the host
Dev Container Requires using the dev-triton-start script. If using the run.py script this requires adding the --server_url=triton:8000 flag. If using the CLI example this requires replacing --server_url=localhost:8000 with --server_url=triton:8000

To run this example, an instance of Triton Inference Server and a sample dataset is required. The following steps will outline how to build and run Triton with the provided FIL model.

Triton Inference Server

Copy
Copied!
            

docker pull nvcr.io/nvidia/tritonserver:23.06-py3

Deploy Triton Inference Server

From the root of the Morpheus repo, run the following to launch Triton and load the abp-pcap-xgb model:

Copy
Copied!
            

docker run --rm --gpus=all -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/examples/abp_pcap_detection/abp-pcap-xgb:/models/abp-pcap-xgb --name tritonserver nvcr.io/nvidia/tritonserver:23.06-py3 tritonserver --model-repository=/models --exit-on-error=false

Verify Model Deployment

Once Triton server finishes starting up, it will display the status of all loaded models. Successful deployment of the model will show the following:

Copy
Copied!
            

+-----------------------------+---------+--------+ | Model | Version | Status | +-----------------------------+---------+--------+ | abp-pcap-xgb | 1 | READY | +-----------------------------+---------+--------+

Use Morpheus to run the Anomalous Behavior Profiling Detection Pipeline with the pcap data. A pipeline has been configured in run.py with several command line options:

From the root of the Morpheus repo, run:

Copy
Copied!
            

python examples/abp_pcap_detection/run.py --help

Output:

Copy
Copied!
            

Usage: run.py [OPTIONS] Options: --num_threads INTEGER RANGE Number of internal pipeline threads to use. [x>=1] --pipeline_batch_size INTEGER RANGE Internal batch size for the pipeline. Can be much larger than the model batch size. Also used for Kafka consumers. [x>=1] --model_max_batch_size INTEGER RANGE Max batch size to use for the model. [x>=1] --input_file PATH Input filepath. [required] --output_file TEXT The path to the file where the inference output will be saved. --model_fea_length INTEGER RANGE Features length to use for the model. [x>=1] --model_name TEXT The name of the model that is deployed on Tritonserver. --iterative Iterative mode will emit dataframes one at a time. Otherwise a list of dataframes is emitted. Iterative mode is good for interleaving source stages. --server_url TEXT Tritonserver url. [required] --file_type [auto|csv|json] Indicates what type of file to read. Specifying 'auto' will determine the file type from the extension. --help Show this message and exit.

To launch the configured Morpheus pipeline with the sample data that is provided in examples/data, run the following:

Copy
Copied!
            

python examples/abp_pcap_detection/run.py

Note: Both Morpheus and Triton Inference Server containers must have access to the same GPUs in order for this example to work.

The pipeline will process the input abp_pcap_dump.jsonlines sample data and write it to pcap_out.jsonlines.

CLI Example

The above example is illustrative of using the Python API to build a custom Morpheus Pipeline. Alternately, the Morpheus command line could have been used to accomplish the same goal by registering the abp_pcap_preprocessing.py module as a plugin.

From the root of the Morpheus repo, run:

Copy
Copied!
            

morpheus --log_level INFO --plugin "examples/abp_pcap_detection/abp_pcap_preprocessing.py" \ run --pipeline_batch_size 100000 --model_max_batch_size 100000 \ pipeline-fil --model_fea_length 13 --label=probs \ from-file --filename examples/data/abp_pcap_dump.jsonlines --filter_null False \ deserialize \ pcap-preprocess \ monitor --description "Preprocessing rate" \ inf-triton --model_name "abp-pcap-xgb" --server_url "localhost:8000" \ monitor --description "Inference rate" --unit inf \ add-class --label=probs \ monitor --description "Add classification rate" --unit "add-class" \ serialize \ monitor --description "Serialize rate" --unit ser \ to-file --filename "pcap_out.jsonlines" --overwrite \ monitor --description "Write to file rate" --unit "to-file"

Previous Anomalous Behavior Profiling with Forest Inference Library (FIL) Example
Next DOCA GPU Real-Time traffic analysis
© Copyright 2024, NVIDIA. Last updated on Jul 8, 2024.