Program Listing for File tensor_memory.cpp

Return to documentation for file (morpheus/_lib/src/messages/memory/tensor_memory.cpp)

Copy
Copied!
            

/* * SPDX-FileCopyrightText: Copyright (c) 2021-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "morpheus/messages/memory/tensor_memory.hpp" // IWYU pragma: associated #include "morpheus/objects/tensor_object.hpp" // for TensorObject #include "morpheus/utilities/cupy_util.hpp" // for CupyUtil #include "morpheus/utilities/stage_util.hpp" #include "morpheus/utilities/string_util.hpp" // for MORPHEUS_CONCAT_STR #include <pybind11/cast.h> #include <pybind11/pytypes.h> // for attribute_error, key_error #include <pybind11/stl.h> // IWYU pragma: keep #include <map> #include <sstream> // needed by MORPHEUS_CONCAT_STR #include <stdexcept> // for std::length_error #include <string> #include <utility> // for move, pair #include <vector> // IWYU pragma: no_include namespace morpheus { /****** Component public implementations *******************/ /****** TensorMemory****************************************/ TensorMemory::TensorMemory(TensorIndex count) : count(count) {} TensorMemory::TensorMemory(TensorIndex count, TensorMap&& tensors) : count(count), m_tensors(std::move(tensors)) { check_tensors_length(this->m_tensors); } bool TensorMemory::has_tensor(const std::string& name) const { return this->m_tensors.find(name) != this->m_tensors.end(); } const TensorObject& TensorMemory::get_tensor(const std::string& name) const { verify_tensor_exists(name); return m_tensors.at(name); } TensorObject& TensorMemory::get_tensor(const std::string& name) { verify_tensor_exists(name); return m_tensors[name]; } void TensorMemory::set_tensor(const std::string& name, TensorObject&& tensor) { check_tensor_length(tensor); this->m_tensors[name].swap(std::move(tensor)); } const TensorMap& TensorMemory::get_tensors() const { return m_tensors; } void TensorMemory::set_tensors(TensorMap&& tensors) { check_tensors_length(tensors); this->m_tensors = std::move(tensors); } TensorMap TensorMemory::copy_tensor_ranges(const std::vector<RangeType>& ranges, TensorIndex num_selected_rows) const { TensorMap tensors; for (const auto& p : this->m_tensors) { tensors.insert(std::pair{p.first, p.second.copy_rows(ranges, num_selected_rows)}); } return tensors; } void TensorMemory::check_tensor_length(const TensorObject& tensor) { if (tensor.shape(0) != this->count) { throw std::length_error{MORPHEUS_CONCAT_STR("The number rows in tensor " << tensor.shape(0) << " does not match TensorMemory.count of " << this->count)}; } } void TensorMemory::check_tensors_length(const TensorMap& tensors) { for (const auto& p : tensors) { check_tensor_length(p.second); } } void TensorMemory::verify_tensor_exists(const std::string& name) const { if (!has_tensor(name)) { throw std::runtime_error(MORPHEUS_CONCAT_STR("Tensor: '" << name << "' not found in memory")); } } /****** TensorMemoryInterfaceProxy *************************/ std::shared_ptr<TensorMemory> TensorMemoryInterfaceProxy::init(TensorIndex count, pybind11::object& tensors) { if (tensors.is_none()) { return std::make_shared<TensorMemory>(count); } else { return std::make_shared<TensorMemory>( count, std::move(CupyUtil::cupy_to_tensors(tensors.cast<CupyUtil::py_tensor_map_t>()))); } } TensorIndex TensorMemoryInterfaceProxy::get_count(TensorMemory& self) { return self.count; } std::vector<std::string> TensorMemoryInterfaceProxy::tensor_names_getter(TensorMemory& self) { return foreach_map(self.get_tensors(), [](const auto& item) -> std::string { // Just return the keys return item.first; }); } bool TensorMemoryInterfaceProxy::has_tensor(TensorMemory& self, std::string name) { return self.has_tensor(name); } CupyUtil::py_tensor_map_t TensorMemoryInterfaceProxy::get_tensors(TensorMemory& self) { return CupyUtil::tensors_to_cupy(self.get_tensors()); } void TensorMemoryInterfaceProxy::set_tensors(TensorMemory& self, CupyUtil::py_tensor_map_t tensors) { self.set_tensors(CupyUtil::cupy_to_tensors(tensors)); } pybind11::object TensorMemoryInterfaceProxy::get_tensor(TensorMemory& self, const std::string name) { try { auto tensor = self.get_tensor(name); return CupyUtil::tensor_to_cupy(tensor); } catch (const std::runtime_error& e) { throw pybind11::key_error{e.what()}; } } pybind11::object TensorMemoryInterfaceProxy::get_tensor_property(TensorMemory& self, const std::string name) { try { return get_tensor(self, std::move(name)); } catch (const pybind11::key_error& e) { throw pybind11::attribute_error{e.what()}; } } void TensorMemoryInterfaceProxy::set_tensor(TensorMemory& self, const std::string name, const pybind11::object& cupy_tensor) { self.set_tensor(name, CupyUtil::cupy_to_tensor(cupy_tensor)); } } // namespace morpheus

© Copyright 2023, NVIDIA. Last updated on Aug 23, 2023.