NeMo Guardrails Microservice Deployment Guide#

Find more information on prerequisites and configuring the key parts of the values.yaml file in the NeMo Microservices Helm Chart.

Prerequisites#

  • A persistent volume provisioner that uses network storage such as NFS, S3, vSAN, and so on. The guardrails configuration is stored in persistent storage.

  • Optional: Install NVIDIA GPU Operator if your nodes have NVIDIA GPUs. The demonstration configuration shown on this page does not require NVIDIA GPUs.

  • To use a single model from one locally-deployed NIM for LLMs container, deploy the container and know the service name so you can specify the service name in the NIM_ENDPOINT_URL environment variable when you install the NeMo Microservices Helm Chart.

  • To use models from multiple locally-deployed NIM for LLMs containers, deploy the following services as prerequisites:

Install NeMo Guardrails as a Standalone Microservice#

Follow the steps below to install NeMo Guardrails as a standalone microservice.

  1. Set the environment variables with your NGC API key and NVIDIA API key:

    $ export NGC_CLI_API_KEY="M2..."
    $ export NVIDIA_API_KEY="nvapi-..."
    
  2. Create a namespace for the microservice:

    $ kubectl create namespace guardrails-ms
    
  3. Add a Docker registry secret for downloading the container image from NVIDIA NGC:

    $ kubectl create secret -n guardrails-ms docker-registry nvcrimagepullsecret \
       --docker-server=nvcr.io \
       --docker-username='$oauthtoken' \
       --docker-password=$NGC_CLI_API_KEY
    
  4. Go to the NeMo Microservices Helm Chart page in the NGC Catalog and select the desired version of the chart. For more information about using Helm charts provided in the NGC Catalog in general, see Helm Charts in the NGC Catalog User Guide.

    Download the chart using the helm fetch command with your user name and NGC API key as follows:

    $ helm fetch "https://helm.ngc.nvidia.com/nvidia/nemo-microservices/charts/nemo-microservices-helm-chart-25.7.0.tgz" \
       --username='$oauthtoken' \
       --password=$NGC_CLI_API_KEY
    
  5. Save the default chart values in a file:

    $ helm show values nemo-microservices-helm-chart > values.yaml
    

    Edit the values.yaml file as needed or create a custom values file. For more information about the default values, refer to NeMo Microservices Helm Chart.

  6. By default, the values.yaml file is configured to install the entire microservices and use NIM Proxy to route requests to deployed NIM for LLMs microservices. To install the service as a standalone microservice, make the following value overrides:

    customizer:
       enabled: false
    data-store:
       enabled: false
    entity-store:
       enabled: false
    nemo-operator:
       enabled: false
    evaluator:
       enabled: false
    guardrails:
       enabled: true
    deployment-management:
       enabled: true
    nim-operator:
       enabled: true
    nim-proxy:
       enabled: true
    
  7. Install the chart and then port-forward the service:

    helm --namespace guardrails-ms install guardrails-ms \
       nemo-microservices-helm-chart \
       -f values.yaml
    

    Partial Output

    Get the application URL by running these commands:
       export POD_NAME=...
       export CONTAINER_PORT=...
       echo "Visit http://127.0.0.1:8080 to use your application"
       kubectl port-forward $POD_NAME 8080:$CONTAINER_PORT
    

    Running the export and kubectl commands prints the URL that you can use to interact with the microservice.

To install NeMo Guardrails with NIM for LLMs#

If you want to use locally deployed NIM for LLMs microservices directly instead of using NIM Proxy, update the values.yaml file to specify the service address for NIM for LLMs as follows.

  1. Update the values.yaml file to specify the service address for NIM for LLMs:

    customizer:
       enabled: false
    data-store:
       enabled: false
    entity-store:
       enabled: false
    nemo-operator:
       enabled: false
    evaluator:
       enabled: false
    guardrails:
       env:
          # NIM Proxy service address
          # NIM_ENDPOINT_URL: nemo-nim-proxy:8000
          # A single NIM for LLMs service address
          NIM_ENDPOINT_URL: <meta-llama3-8b-instruct:8000>
    deployment-management:
       enabled: false
    nim-operator:
       enabled: false
    nim-proxy:
       enabled: false
    
  2. Optional: Configure access to models on build.nvidia.com.

    1. Add the following secret that populates the NVIDIA_API_KEY environment variable in the container:

      $ kubectl create secret -n guardrails-ms generic nvidia-api-secret \
          --from-literal=NVIDIA_API_KEY=$NVIDIA_API_KEY
      
    2. Update the values.yaml file so that NVIDIA_API_KEY is populated in the container from the secret:

      guardrails:
        guardrails:
          nvcfAPIKeySecretName: nvidia-api-secret
      

Set Up NeMo Guardrails to Use NIM Endpoints from build.nvidia.com#

  1. If you set the NIM_ENDPOINT_URL environment variable to a NIM endpoint from build.nvidia.com, add the following secret that populates the NIM_ENDPOINT_API_KEY environment variable in the container:

    $ kubectl create secret -n guardrails-ms generic nim-endpoint-api-secret \
        --from-literal=nim-endpoint-api-key=$NVIDIA_API_KEY
    
  2. Edit the values.yaml file with the following changes:

    guardrails:
       env:
          NIM_ENDPOINT_URL: <nim-endpoint-url>
          NIM_ENDPOINT_API_KEY:
             valueFrom:
                secretKeyRef:
                name: nim-endpoint-api-secret
                key: nim-endpoint-api-key